
CSCI E-124 Homework 2 Out: Feb. 13, 2003
Due: Feb 28, 2003

For all homework problems where you are asked to give an algorithm, you must prove the correctness of your
algorithm and establish the best upper bound that you can give for the running time. You should always write a
clear informal description of your algorithm in English. You may also write pseudocode if you feel your informal
explanation requires more precision and detail. As always, try to make your answers as clear and concise as
possible.

1. List the order in which the nodes in the graph below are visited in a depth-first search starting from node A.
In case of ties visit the alphabetically first node first. Also classify all graph edges as tree edges, back edges,
forward edges, or cross edges. List the order of visits for a breadth-first search from A.

A DC E G

F

B H

3

2 1

4

7
5

1 3

3

23

2
1

4

1

13

2. Find the shortest path, and its length, from A to E in the graph above using Dijkstra’s algorithm. List all the
steps in reasonable detail.

3. A bipartite graph is a graph whose vertices can be partitioned into two disjoint sets V1 and V2 such that there
are no edges between vertices in V1 nor any edges between vertices in V2. (See Figure 1.) Give a linear time
algorithm for determining whether an undirected graph is bipartite.

Figure 1: A bipartite graph.

4. Giles has asked Buffy to optimize her procedure for nighttime patrol of Sunnydale. (This takes place sometime
in Season 2.) Giles points out that proper slaying technique would allow Buffy to traverse all of the streets of
Sunnydale in such a way that she would walk on each side of each street, exactly once. Buffy now has slayer
homework: how can it be done? (If you have to assume anything about the layout of the city of Sunnydale,
make it clear!)

1



5. The bottleneck of a path is defined to be the length of the longest edge in the path. Design an efficient algorithm
to solve the single source smallest bottleneck problem; i.e. find the paths from a source to every other node
such that each path has the smallest possible bottleneck.

6. The risk-free currency exchange problem offers a risk-free way to make money. Suppose we have currencies
c1; : : : ;cn. (For example, c1 might be dollars, c2 rubles, c3 yen, etc.) For every two currencies ci and cj there is
an exchange rate ri; j such that you can exchange one unit of ci for ri; j units of cj. Note that if ri; j � r j;i > 1, then
you can make money simply by trading units of currency i into units of currency j and back again. This almost
never happens, but occasionally (because the updates for exchange rates do not happen quickly enough) for
very short periods of time exchange traders can find a sequence of trades that can make risk-free money. That
is, if there is a sequence of currencies ci1 ;ci2 ; : : : ;cik such that ri1;i2 � ri2;i3 : : : � rik�1;ik � rik ;i1 > 1, then trading one
unit of ci1 into ci2 and trading that into ci3 and so on will yield a profit.

Design an efficient algorithm to detect and output a risk-free currency exchange if any exist.

7. Give an efficient algorithm that takes as input a DAG G and two vertices s and t and outputs the number of
paths from s to t in G.

2


