
CS124 Lecture 20

Heuristics can be useful in practice, but sometimes we would like to have guarantees. Approximation algorithms

give guarantees. It is worth keeping in mind that sometimes approximation algorithms do not always perform as well

as heuristic-based algorithms. Other times they provide insight into the problem, so they can help determine good

heuristics.

Often when we talk about an approximation algorithm, we give an approximation ratio. The approximation

ratio gives the ratio between our solution and the actual solution. The goal is to obtain an approximation ratio as

close to 1 as possible. If the problem involves a minimization, the approximation ratio will be greater than 1; if it

involves a maximization, the approximation ratio will be less than 1.

Vertex Cover Approximations

In the Vertex Cover problem, we wish to find a set of vertices of minimal size such that every edge is adjacent

to some vertex in the cover. That is, given an undirected graph G = (V,E), we wish to find U ⊆ V such that every

edge e ∈ E has an endpoint in U . We have seen that Vertex Cover is NP-complete.

A natural greedy algorithm for Vertex Cover is to repeatedly choose a vertex with the highest degree, and put it

into the cover. When we put the vertex in the cover, we remove the vertex and all its adjacent edges from the graph,

and continue. Unfortunately, in this case the greedy algorithm gives us a rather poor aprroximation, as can be seen

with the following example:

vertices chosen
by greedy

vertices in the
min cover

Figure 20.1: A bad greedy example.

In the example, all edges are connected to the base level; there are m/2 vertices at the next level, m/3 vertices

20-1

Lecture 20 20-2

at the next level, and so on. Each vertex at the base level is connected to one vertex at each other level, and the

connections are spread as evenly as possible at each level. A greedy algorithm could always choose a rightmost

vertex, whereas the optimal cover consists of the leftmost vertices. This example shows that, in general, the greedy

approach could be off by a factor of Ω(logn), where n is the number of vertices.

A better algorithm for vertex cover is the following: repeatedly choose an edge, and throw both of its endpoints

into the cover. Throw the vertices and its adjacent edges out of the graph, and continue.

It is easy to show that this second algorithm uses at most twice as many vertices as the optimal vertex cover.

This is because each edge that gets chosen during the course of the algorithm must have one of its endpoints in the

cover; hence we have merely always thrown two vertices in where we might have gotten away with throwing in 1.

Somewhat surprsingly, this simple algorithm is still the best knwon approximation algorithm for the vertex

cover problem. That is, no algorithm has been proven to do better than within a factor of 2.

Maximum Cut Approximation

We will provide both a randomized and a deterministic approximation algorithm for the MAX CUT problem.

The MAX CUT problem is to divide the vertices in a graph into two disjoint sets so that the numbers of edges

between vertices in different sets is maximized. This problem is NP-hard. Notice that the MIN CUT problem can

be solved in polynomial time by repeated using the min cut-max flow algorithm. (Exercise: Prove this!)

The randomized version of the algorithm is as follows: we divide the vertices into two sets, HEADS and TAILS.

We decide where each vertex goes by flipping a (fair) coin.

What is the probability an edge crosses between the sets of the cut? This will happen only if its two endpoints

lie on different sides, which happens 1/2 of the time. (There are 4 possibilities for the two endpoints – HH,HT,TT,TH

– and two of these put the vertices on different sides.) So, on average, we expect 1/2 the edges in the graph to cross

the cut. Since the most we could have is for all the edges to cross the cut, this random assignment will, on average,

be within a factor of 2 of optimal.

We now examine a deterministic algorithm with the same “approximation ratio”. (In fact, the two algorithms

are intrinsically related– but this is not so easy to see!) The algorithm implements the hill climbing approximation

heuristic. We will split the vertices into sets S1 and S2. Start with all vertices on one side of the cut. Now, if you can

switch a vertex to a different side so that it increases the number of edges across the cut, do so. Repeat this action

until the cut can no longer be improved by this simple switch.

Lecture 20 20-3

We switch vertices at most |E| times (since each time, the number of edges across the cut increases). Moreover,

when the process finishes we are within a factor of 2 of the optimal, as we shall now show. In fact, when the process

finishes, at least |E|/2 edges lie in the cut.

We can count the edges in the cut in the following way: consider any vertex v ∈ S1. For every vertex w in S2

that it is connected to by an edge, we add 1/2 to a running sum. We do the same for each vertex in S2. Note that

each edge crossing the cut contributes 1 to the sum– 1/2 for each vertex of the edge.

Hence the cut C satisfies

C =
1
2

(
∑

v∈S1

|{w : (v,w) ∈ E,w ∈ S2}|+ ∑
v∈S2

|{w : (v,w) ∈ E,w ∈ S1}|
)

.

Since we are using the local search algorithm, at least half the edges from any vertex v must lie in the set opposite

from v; otherwise, we could switch what side vertex v is on, and improve the cut! Hence, if vertex v has degree δ(v),

then

C =
1
2

(
∑

v∈S1

|{w : (v,w) ∈ E,w ∈ S2}|+ ∑
v∈S2

|{w : (v,w) ∈ E,w ∈ S1}|
)

≥ 1
2

(
∑

v∈S1

δ(v)
2

+ ∑
v∈S2

δ(v)
2

)

=
1
4 ∑

v∈V
δ(v)

=
1
2
|E|,

where the last equality follows from the fact that if we sum the degree of all vertices, we obtain twice the number of

edges, since we have counted each edge twice.

In practice, we might expect that hill climbing algorithm would do better than just getting a cut within a factor

of 2.

Euclidean Travelling Salesperson Problem

In the Euclidean Travelling Salesman Problem, we are given n points (cities) in the x− y plane, and we seek

the tour (cycle) of minimum length that travels through all the cities. This problem is NP-complete (showing this is

somewhat difficult).

Our approximation algorithm involves the following steps:

1. Find a minimum spanning tree T for the points.

Lecture 20 20-4

2. Create a psuedo tour by walking around the tree. The pseduo tour may visit some vertices twice.

3. Remove repeats from the tour by short-cutting through the repeated vertices. (See Figure 20.2.)

X

Constructed tour

Constructed pseudo tour

Minimum spanning tree

Figure 20.2: Building an approximate tour. Start at X , move in the direction shown, short-cutting repeated vertices.

We now show the following inequalities:

length of tour ≤ length of pseudo tour

≤ 2(size of T)

≤ 2(length of optimal tour)

Short-cutting edges can only decrease the length of the tour, so the tour given by the algorithm is at most the

length of the pseudo tour. The length of our psuedo tour is at most twice the size of the spanning tree, since this

pseudo tour consists of walking through each edge of the tree at most twice. Finally, the length of the optimal tour

is at least the size of the minimum spanning tree, since any tour contains a spanning tree (plus an edge!).

Using a similar idea, one can come up with an approximation algorithm that returns a tour that is within a factor

of 3/2 of the optimal. Also, note that this algorithm will work in any setting where short-cutting is effective. More

Lecture 20 20-5

specifically, it will work for any instance of the travelling salesperson problem that satisfies the triangle inequality

for distances: that is, if d(x,y) represents the distance between vertices x and y, and d(x,z) ≤ d(x,y)+ d(y,z) for all

x,y and z.

MAX-SAT: Applying Randomness

Consider the MAX-SAT problem. What happens if we do the simplest random thing we can think of– we

decide whether each variable should be TRUE or FALSE by flipping a coin.

Theorem 20.1 On average, at least half the clauses will be satisfied if we just flip a coin to decide the value of each

variable. Moreover, if each clause has k literals, then on average 1−2−k clauses will be satisfied.

The proof is simple. Look at each clause. If it has k literals in it, then each literal could make the clause TRUE

with probability 1/2. So the probability the clause is not satisfied is 1−2−k, where k is the number of literals in the

clause.

Linear Programming Relaxation

The next approach we describe, linear programming relaxation, can often be used as a good heuristic, and

in some cases it leads to approximation algorithms with provable guarantees. Again, we will use the MAX-SAT

problem as an example of how to use this technique.

The idea is simple. Most NP-complete problems can be easily described by a natural Integer Programming

problem. (Of course, all NP-complete problems can be transformed into some Integer Programming problem, since

Integer Programming is NP-complete; but what we mean here is in many cases the transformation is quite natural.)

Even though we cannot solve the related Integer Program, if we pretend it is a linear program, then we can solve it,

using (for example) the simplex method. This idea is konwn as relaxation, since we are relaxing the constraints on

the solution; we are no longer requiring that we get a solution where the variables take on integer values.

If we are extremely lucky, we might find a solution of the linear program where all the variables are integers,

in which case we will have solved our original problem. Usually, we will not. In this case we will have to try to

somehow take the linear programming solution, and modify it into a solution where all the variables take on integer

values. Randomized Rouding is one technique for doing this.

MAX-SAT

Lecture 20 20-6

We may formulate MAX-SAT as an integer programming problem in a straightforward way (in fact, we have

seen a similar reduction before, back when we examined reducitons; it is repeated here). Suppose the formula

contains variables x1,x2, . . . ,xn which must be set to TRUE or FALSE, and clauses C1,C2, . . . ,Cm. For each variable

xi we associate a variable yi which should be 1 if the variable is TRUE, and 0 if it is FALSE. For each clause Cj we

have a variable zj which should be 1 if the clause is satisfied and 0 otherwise.

We wish to maximize the number of satisfied clauses s, or

m

∑
j=1

z j.

The constraints include that that 0 ≤ yi,z j ≤ 1; since this is an integer program, this forces all these variables

to be either 0 or 1. Finally, we need a constraint for each clause saying that its associated variable zj can be 1 if and

only if the clause is actually satisfied. If the clause Cj is (x2 ∨x4∨x6∨x8), for example, then we need the restriction:

y2 + y6 +(1− y4)+ (1− y8) ≥ z j.

This forces zj to be 0 unless the clause can be satisfied. In general, we replace xi by yi, xi by 1− yi, ∨ by +, and set

the whole thing ≥ zj to get the appropriate constraint.

When we solve the linear program, we will get a solution that might have y1 = 0.7 and z1 = 0.6, for instance.

This initially appears to make no sense, since a variable cannot be 0.7 TRUE. But we can still use these values in a

reasonable way. If y1 = 0.7, it suggests that we would prefer to set the variable x1 to TRUE (1). In fact, we could

try just rounding each variable up or down to 0 or 1, and use that as a solution! This would be one way to turn

the non-integer solution into an integer solution. Unfortunately, there are problems with this method. For example,

suppose we have the clause C1 = (x1∨x2∨x3), and y1 = y2 = y3 = 0.4. Then by simple rounding, this clause will not

be TRUE, even though it “seems satisfied” to our linear program (that is, z1 = 1). If we have a lot of these clauses,

regular rounding might perform very poorly.

It turns out that there an interpretation for 0.7 that suggests a better way than simple rounding. We think of the

0.7 as a probability. That is, we interpret y1 = 0.7 as meaning that x1 would like to be true with probability 0.7.

So we take each variable xi, and independently we set it to 1 with the probability given by yi (and with probability

1− yi we set xi to 0). This process is known as randomized rounding. One reason randomized rounding is useful is

it allows us to prove that the expected number of clauses we satisfy using this rounding is a within a constant factor

of the true optimum.

First, note that whatever the maximum number of clauses s we can satisfy is, the value found by the linear

Lecture 20 20-7

program, or ∑m
j=1 z j, is at least as big as s. This is because the linear program could achieve a value of at least s

simply by using as the values for yi the truth assignment that make satisfying s clauses possible.

Now consider a clause with k variables; for convenience, suppose the clause is just C1 = (x1 ∨ x2 . . .∨ xk).

Suppose that when we solve the linear program, we find z1 = β. Then we claim that the probability that this clause

is satisfied after the rounding is at least (1− 1/e)β. This can be checked (using a bit of sophisticated math), but it

follows by noting (with experiments) that the worst possibility is that y1 = y2 . . . = yk = β/k. In this case, each x1

is FALSE with probability (1− β/k), and so C1 ends up being unsatisfied with probability (1− β/k)k. Hence the

probability it is satisfied is at least (again using some math) 1− (1−β/k)k ≥ (1−1/e)β.

Hence the ith clause is satisfied with probability at least (1−1/e)zi, so the expected number of satisfied clauses

after randomized rounding is at least (1−1/e)∑m
j=1 z j. This is within a factor of (1−1/e) of our upper bound on the

maximum number of satisfiable clauses, ∑m
j=1 z j. Hence we expected to get within a constant factor of the maximum.

Combining the Two

Surprisingly, by combining the simple coin flipping algorithm with the randomized rounding algorithm, we can

get an even better algorithm. The idea is that the coin flipping algorithm does best on long clauses, since each literal

in the clause makes it more likely the clause gets set to TRUE. On the other hand, randomized rounding does best

on short clauses; the probability the clause is satisfied (1− (1−β/k)k) decreases with k. It turns out that if we try

both algorithms, and take the better result, on average we will satisfy 3/4 of the clauses.

We also point out that there are even more sophisticated approximation algorithms for MAX-SAT, with better

approximation ratios. However, these algorithms point out some very interesting and useful general techniques.

