
CS E-124–Spring, 2003 Programming Assignment 3 Out: April 17, 2003
Due: May 8, 2003

For this programming assignment, you will implement a number of heuristics for solving the NUMBER PAR-
TITION problem, which is (of course) NP-complete. As input, the number partition problem takes a sequence
A � �a1�a2� � � � �an� of non-negative integers. The output is a sequenceS � �s1�s2� � � � �sn� of signssi � ��1��1�
such that theresidue

u �

�
�
�
�
�

n

∑
i�1

siai

�
�
�
�
�

is minimized. Another way to view the problem is the goal is to split the set (or multi-set) of numbers given byA
into two subsetsA1 andA2 with roughly equal sums. The absolute value of the difference of the sums is the residue.

As a warm-up exercise, you will first prove that even though Number Partition is NP-complete, it can be solved
in pseudo-polynomial time. That is, suppose the sequence of terms inA sum up to some numberb. Then each of the
numbers inA has at most logb bits, so a polynomial time algorithm would take time polynomial inn logb. Instead
you should find a dynamic programming algorithm that takes time polynomial innb.

Give a dynamic programming solution to the Number Partition problem.

One deterministic heuristic for the Number Partition problem is the Karmarkar-Karp algorithm, or the KK
algorithm. This approach usesdifferencing. The differencing idea is to take two elements fromA, call themai and
aj, and replace the larger by�ai � aj� while replacing the smaller by 0. The intuition is that if we decide to putai

andaj in different sets, then it is as though we have one element of size�ai � aj� around. An algorithm based on
differencing repeatedly takes two elements fromA and performs a differencing until there is only one element left;
this element equals an attainable residue. (A sequence of signssi that yields this residue can be determined from the
differencing operations performed in linear time by two-coloring the graph�A�E� that arises, whereE is the set of
pairs�ai�aj� that are used in the differencing steps. You will not need to construct thesi for this assignment.)

For the Karmarkar-Karp algorithm suggests repeatedly taking the largest two elements remaining inA at each
step and differencing them. For example, ifA is intially �10�8�7�6�5�, then the KK algorithm proceeds as follows:

�10�8�7�6�5� � �2�0�7�6�5�

� �2�0�1�0�5�

� �0�0�1�0�3�

� �0�0�0�0�2�

Hence the KK algorithm returns a residue of 2. The best possible residue for the example is 0.

Explain briefly how the Karmarkar-Karp algorithm can be implemented in O�n logn� steps, assuming
the values in A are small enough that arithmetic operations take one step.

You will compare the Karmarkar-Karp algorithm and a variety of randomized heuristic algorithms on random
input sets. Let us first discuss two ways to represent solutions to the problem and the state space based on these
representations. Then we discuss heuristic search algorithms you will use.

The standard representation of a solution is simply as a sequenceS of �1 and�1 values. A random solution
can be obtained by generating a random sequence ofn such values. Thinking of all possible solutions as a state
space, a natural way to define neighbors of a solutionS is as the set of all solutions that differ fromS in either one
or two places. This has a natural interpretation if we think of the�1 and�1 values as determining two subsetsA1

1



andA2 of A. Moving fromS to a neighbor is accomplished either by moving one or two elements fromA1 to A2, or
moving one or two elements fromA2 to A1, or swapping a pair of elements where one is inA1 and one is inA2.

A random move on this state space can be defined as follows. Choose two random indicesi and j from �1�n�
with i �� j. Setsi to�si and with probability 1�2, setsj to�s j.

An alternative way to represent a solution calledprepartitioning is as follows. We represent a solution by a
sequenceP � �p1� p2� � � � � pn� wherepi � �1� � � � �n�. The sequenceP represents a prepartitioning of the elements of
A, in the following way: if pi � pj, then we enforce the restriction thatai andaj have the same sign. Equivalently,
if pi � pj, thenai andaj both lie in the same subset, eitherA1 or A2.

We turn a solution of this form into a solution in the standard form using two steps:

� We derive a new sequenceA� from A which enforces the prepartioning fromP. EssentiallyA� is derived by
resettingai to be the sum of all valuesj with pj � i, using for example the following pseudocode:

A� � �0�0� � � � �0�
for j � 1 to n

a�
pj
� a�

pj
�aj

� We run the KK heuristic algorithm on the resultA�.

For example, ifA is initially �10�8�7�6�5�, the solutionP � �1�2�2�4�5� corresponds to the following run of
the KK algorithm:

A � �10�8�7�6�5� � A� � �10�15�0�6�5�

�10�15�0�6�5� � �0�5�0�6�5�

� �0�0�0�1�5�

� �0�0�0�0�4�

Hence in this case the solutionP has a residue of 4.

Notice that all possible solution sequencesS can be generated using this prepartition representation, as any split
of A into setsA1 andA2 can be obtained by initially assigningpi to 1 for all ai � A1 and similarly assigningpi to 2
for all ai � A2.

A random solution can be obtained by generating a sequence ofn values in the range�1�n� and using this forP.
Thinking of all possible solutions as a state space, a natural way to define neighbors of a solutionP is as the set of
all solutions that differ fromP in just one place. The interpretation is that we change the prepartitioning by changing
the partition of one element. Arandom move on this state space can be defined as follows. Choose two random
indicesi and j from �1�n� with pi �� j and setpi to j.

You will try each of the following three algorithms for both representations.

� Repeated random: repeatedly generate random solutions to the problem, as determined by the representation.

2



Start with a random solutionS
for iter = 1 to maxiter

S� � a random solution
if residue�S��� residue�S� then S � S�

returnS

� Hill climbing: generate a random solution to the problem, and then attempt to improve it through moves to
better neighbors.

Start with a random solutionS
for iter = 1 to maxiter

S� � a random neighbor ofS
if residue�S��� residue�S� then S � S�

returnS

� Simulated annealing: generate a random solution to the problem, and then attempt to improve it through moves
to neighbors, that are not always better.

Start with a random solutionS
for iter = 1 to maxiter

S� � a random neighbor ofS
if residue�S��� residue�S� then S � S�

else S � S� with probability exp(�(res(S�)-res(S))/T(iter))
returnS

Note that one could also have the code return the best solution seen thus far; in practice the two procedures
are essentially the same if the process is run for enough iterations.

You will run experiments on sets of 100 integers, with each integer being a random number chosen uniformly
from the range�1�1012�. Note that these are big numbers. You should use 64 bit integers. Pay attention to things like
whether your random number generator works on ranges this large!

Below is the main problem of the assignment.

Generate 50 random instances of the problem as described above. For each instance, find the result from
using the Karmarkar-Karp algorithm. Also, for each instance, run a repeated random, a hill climbing, and
a simulated annealing algorithm, using both representations, each for at least 25,000 iterations. Compare the
results and discuss.

For the simulated annealing algorithm, you must choose acooling schedule. That is, you must choose a function
T(iter). We suggest T(iter) = 1010�0�8��iter�300� for numbers in the range�1�1012�, but you can experiment with this
as you please.

Note that, in our random experiments, we began with a random initial starting point.

Discuss briefly how you could use the solution from the Karmarkar-Karp algorithm as a starting point
for the randomized algorithms, and suggest what effect that might have. (No experiments are necessary.)

3


