(CS124-Spring, 2003 Programming Assignment 1 Out: February 20, 2003
Due: March 7, 2003

Overview: The purpose of this assignment is to experience some of the problems involved with imple-
menting an algorithm (in this case, a minimum spanning tree algorithm) in practice. As an added benefit,
we will explore how minimum spanning trees behave in random graphs.

Assignment: You should do all the work by yourself. If you wish to use a programming language
other than Java, C, or C++, please clear it with me.

We will be considering complete, undirected graphs. A graph with n vertices is complete if all possible

(3) edges are present in the graph.

Consider the following types of graphs:

e Complete graphs on n vertices, where the weight of each edge is a real number chosen uniformly at
random on [0, 1].

e Complete graphs on n vertices, where the vertices are points chosen uniformly at random inside the
unit square. (That is, the points are (z,y), with z and y each a real number chosen uniformly at
random from [0,1].) The weight of an edge is just the Euclidean distance between its endpoints.

Your first goal is to determine in each case how the expected (average) weight of the minimum spanning
tree grows as a function of n. This will require implementing an MST algorithm, as well as procedures
that generate the appropriate random graphs. (You should check to see what sorts of random number
generators are available on your system, and determine how to seed them, say with a value from the
machine’s clock.) You may implement any MST algorithm (or algorithms!) you wish; however, I suggest
you choose carefully.

For each type of graph, you must choose several values of n to test. For each value of n, you must run
your code on several randomly chosen instances of the same size n, and compute the average value for your

runs. Plot your values vs. n, and interpret your results by giving a simple function f(n) that describes
your plot. For example, your answer might be f(n) = logn, f(n) = 1.5\/n, or f(n) = (2%, Try to make

~ logn*
your answer as accurate as possible; this includes determining the constant factors as well as you can.

Code setup:

So that we may test your code ourselves as necessary, please make sure your code accepts the following
command line form:

randmst 0 numpoints numtrials dimension

The flag 0 is meant to provide you some flexibility; you may use other values for your own testing,
debugging, or extensions. The value numpoints is n, the number of points; the value numtrials is the
number of runs to be done; the value dimension gives the dimension. (Use dimension = 2 for the square,
and use dimension = 0 for the case where weights are assigned randomly. Dimension 1 is just not that
interesting.) The output for the above command line should be the following:

average numpoints numtrials dimension
where average is the average minimum spanning tree weight over the trials.

What to hand in: Besides turning in a copy of the code, you should hand in a single well organized
and clearly written report describing your results. This report must contain the following quantitative



results (for each graph type):

e A table or graph listing the average tree size for several values of n.

e A description of your guess for the function f(n).

Run your program for n = 16,32,64,128,256,512,1024,2048 and larger values, if your program runs fast
enough. Run each value of n at least five times and take the average. (Make sure you re-seed the random
number generator before each run!)

In addition, you are expected to briefly discuss your experiments; the actual issues you choose to
discuss are up to you. Here are some possible suggestions:

e Which algorithm did you use, and why?
e Are the growth rates (the f(n)) surprising? Can you come up with an explanation for them?

e Did you have any interesting experiences with the random number generator? Do you trust it?

You will also be submitting your code electronically to the libcs124 directory, so that we may test it
as necessary. The submission process will be posted on line.

Your grade will be based primarily on the correctness of your program and your discussion of the
experiments. Other considerations will include the size of n your program can handle. Please do a careful
job of solid writing in your writeup. Length will not earn you a higher grade, but clear descriptions of
what you did, why you did it, and what you learned by doing it will go far.

Hints:

To handle large n, you may want to consider simplifying the graph. For example, for the graphs in
this assignment, the minimum spanning tree is extremely unlikely to use any edge of weight greater than
k(n), for some function k(n). We can estimate k(n) using small values of n, and then try to throw away
edges of weight larger than k(n) as we increase the input size. Notice that throwing away too many edges
may cause problems. Why will throwing away edges in this manner never lead to a situation where the
program returns the wrong tree?

You may invent any other techniques you like, as long as they give the same results as a non-optimized
program. Be sure to explain any techniques you use as part of your discussion and attempt to justify why
they should give the same results as a non-optimized program!



