
CS 124 Course Notes 1 Spring 2001

An algorithmisarecipeor awell-definedprocedurefor performingacalculation,or in general,for transforming

someinput into a desiredoutput. Perhapsthemostfamiliar algorithmsarethosethosefor addingandmultiplying

integers.Hereis amultiplicationalgorithmthatis differentfrom thestandardalgorithmyoulearnedin school:write

themultiplier andmultiplicandsideby side. Repeatthefollowing operations- divide thefirst numberby 2 (throw

outany fractions)andmultiply thesecondby 2, until thefirst numberis 1. This resultsin two columnsof numbers.

Now crossout all rows in which thefirst entry is even,andaddall entriesof thesecondcolumnthathaven’t been

crossedout. Theresultis theproductof thetwo numbers.

In this coursewewill askanumberof basicquestionsaboutalgorithms:� Doesit halt?

Theanswerfor thealgorithmgivenabove is clearlyyes,provided we aremultiplying positive integers. The

reasonis thatfor any integergreaterthan1,whenwedivideit by 2 andthrow outthefractionalpart,wealways

getasmallerintegerwhich is greaterthanor equalto 1. Henceourfirst numberis eventuallyreducedto 1 and

theprocesshalts.� Is it correct?

To seethatthealgorithmcorrectlycomputestheproductof theintegers,observe thatif we write a 0 for each

crossedout row, and1 for eachrow that is not crossedout, thenreadingfrom bottomto top just givesus

thefirst numberin binary. Therefore,thealgorithmis just doingstandardmultiplication,with themultiplier

written in binary.� Is it fast?

It turnsout thattheabove algorithmis aboutasfastasthestandardalgorithmyou learnedin school.Laterin

thecourse,wewill studya fasteralgorithmfor multiplying integers.� How muchmemorydoesit use?

Thememoryusedby thisalgorithmis alsoaboutthesameasthatof standardalgorithm.

The history of algorithmsfor simplearithmeticis quite fascinating.Although we take thesealgorithmsfor

granted,their widespreaduseis surprisinglyrecent.Thekey to goodalgorithmsfor arithmeticwasthepositional

1-1

1-2

75 29
37 58
18 116
 9 232
 4 464
 2 928
 1 1856
 2175

 29
x 1001011

29
58

232
1856
2175

Figure1.1: A differentmultiplicationalgorithm.

numbersystem(suchasthe decimalsystem). Romannumerals(I, II, III, IV, V, VI, etc) are just the wrong data

structurefor performingarithmeticefficiently. The positionalnumbersystemwas first inventedby the Mayan

Indiansin CentralAmericaabout2000yearsago.They usedabase20system,andit is unknown whetherthey had

inventedalgorithmsfor performingarithmetic,sincetheSpanishconquerorsdestroyedmostof theMayanbookson

scienceandastronomy.

Thedecimalsystemthatweusetodaywasinventedin Indiain roughly600AD. Thispositionalnumbersystem,

togetherwith algorithmsfor performingarithmetic,weretransmittedto Persiaaround750AD, whenseveralimpor-

tantIndianworksweretranslatedinto Arabic. Aroundthis time thePersianmathematicianAl-Khwarizmiwrotehis

Arabic textbookon the subject.The word “algorithm” comesfrom Al-Khwarizmi’s name.Al-Khwarizmi’s work

wastranslatedinto Latin around1200AD, andthe positionalnumbersystemwaspropagatedthroughoutEurope

from 1200to 1600AD.

The decimalpoint wasnot inventeduntil the 10th centuryAD, by a Syrianmathematicianal-Uqlidisi from

Damascus.His work wassoonforgotten,andfivecenturiespassedbeforedecimalfractionswerere-inventedby the

Persianmathematicianal-Kashi.

With theinventionof computersin this century, thefield of algorithmshasseenexplosive growth. Therearea

numberof majorsuccessesin thisfield:� Parsingalgorithms- theseform thebasisof thefield of programminglanguages� FastFouriertransform- thefield of digital signalprocessingis built uponthisalgorithm.� Linearprogramming- thisalgorithmis extensively usedin resourcescheduling.� Sortingalgorithms- until recently, sortingusedup thebulk of computercycles.� Stringmatchingalgorithms- theseareextensively usedin computationalbiology.

1-3

� Numbertheoreticalgorithms- thesealgorithmsmake it possibleto implementcryptosystemssuchastheRSA

publickey cryptosystem.� Compressionalgorithms- thesealgorithmsallow usto transmitdatamoreefficiently over, for example,phone

lines.� Geometricalgorithms- displayingimagesquickly on a screenoftenmakesuseof sophisticatedalgorithmic

techniques.

In designinganalgorithm,it is ofteneasierandmoreproductive to think of a computerin abstractterms.Of

course,we mustcarefully chooseat what level of abstractionto think. For example,we could think of computer

operationsin termsof a high level computerlanguagesuchasC or Java, or in termsof anassemblylanguage.We

coulddip furtherdown, andthink of thecomputerat thelevel AND andNOT gates.

For mostalgorithmdesignweundertake in thiscourse,it is generallyconvenientto work at a fairly high level.

Wewill usuallyabstractawayeventhedetailsof thehigh level programminglanguage,andwrite our algorithmsin

”pseudo-code”,withoutworryingaboutimplementationdetails.(Unless,of course,wearedealingwith a program-

mingassignment!)Sometimeswehave to becarefulthatwedonotabstractawayessentialfeaturesof theproblem.

To illustratethis, let usconsiderasimplebut enlighteningexample.

1.1 Computing the nth Fibonacci number

Rememberthe famoussequenceof numbersinventedin the 15th centuryby the Italian mathematicianLeonardo

Fibonacci?The sequenceis representedasF0 � F1 � F2 ����� , whereF0
� 0, F1

� 1, andfor all n
�

2, Fn is definedas

Fn � 1 � Fn � 2. Thefirst few Fibonaccinumbersare0 � 1 � 1 � 2 � 3 � 5 � 8 � 13� 21 � 34 � 55������� Thevalueof F30 is greaterthana

million! It is easyto seethattheFibonaccinumbersgrow exponentially. As anexercise,try to show thatFn
�

2n 	 2
for sufficiently largen by asimpleinduction.

Hereis asimpleprogramto computeFibonaccinumbersthatslavishly follows thedefinition.

functionF
 n: integer): integer

if n � 0 thenreturn0

elseif n � 1 thenreturn1

elsereturnF
 n � 1� � F
 n � 2�

1-4

Theprogramis obviouslycorrect.However, it is woefully slow. As it is a recursive algorithm,wecannaturally

expressits runningtimeon inputn with a recurrence equation. In fact,wewill simplycountthenumberof addition

operationstheprogramuses,whichwedenoteby T
 n � . To developarecurrenceequation,weexpressT
 n � in terms

of smallervaluesof T . Weshallseeseveralsuchrecurrencerelationsin thisclass.

It is clearthatT
 0� � 0 andT
 1� � 0. Otherwise,for n
�

2, wehave

T
 n � � T
 n � 1� � T
 n � 2� � 1 �
becauseto computerF
 n � we computeF
 n � 1� andF
 n � 2� anddo oneotheradditionbesides.This is (almost)

theFibonacciequation!Hencewecanseethatthenumberof additionoperationsis growing very large;it is at least

2n 	 2 for n
�

4.

Can we do better? This is the questionwe shall alwaysaskof our algorithms. The troublewith the naive

algorithmthewastefulrecursion:thefunctionF is calledwith thesameargumentoverandoveragain,exponentially

many times(try to seehow many timesF
 1� is calledin thecomputationof F
 5�). A simpletrick for improving

performanceis to avoid repeatedcalculations.In this case,this canbeeasilydoneby avoiding recursionandjust

calculatingsuccessive values:

functionF(n: integer): integerarrayA
 0 ����� n � of integer

A
 0� � 0; A
 1� � 1

for i � 2 to n do:

A
 i � � A
 i � 1� � A
 i � 2�
returnA
 n �

Thisalgorithmis of coursecorrect.Now, however, weonly don � 1 additions.

It seemsthatwe have comesofar, from exponentialto polynomiallymany operations,thatwe canstophere.

But in thebackof our heads,we shouldbewonderingan we do even better? Surprisingly, we can.We rewrite our

equationsin matrixnotation.Then ��
F1

F2

�� � ��
0 1

1 1

���� ��
F0

F1

�� �
Similarly, ��

F2

F3

�� � ��
0 1

1 1

�� � ��
F1

F2

�� � ��
0 1

1 1

�� 2 � ��
F0

F1

�� �
andin general,Similarly, ��

Fn

Fn � 1

�� � ��
0 1

1 1

�� n � ��
F0

F1

�� �

1-5

So, in orderto computeFn, it sufficesto raisethis 2 by 2 matrix to thenth power. Eachmatrix multiplication

takes12 arithmeticoperations,sothequestionboils down to thefollowing: how many multiplications does it take

to raise a base (matrix, number, anything) to the nth power? Theansweris O
 logn � . To seewhy, considerthecase

wheren � 1 is apower of 2. To raiseX to thenth power, wecomputeXn 	 2 andthensquareit. Hencethenumberof

multiplicationsT
 n � satisfies

T
 n � � T
 n � 2� � 1 �
from which we find T
 n � � logn. As an exercise,considerwhat you have to do when n is not a power of 2.

(Hint: considertheconnectionwith themultiplicationalgorithmof thefirst section;theretoo we repeatedlyhalved

anumber...)

So we have reducedthe computationtime exponentiallyagain,from n � 1 arithmeticoperationsto O
 logn � ,
a greatachievement. Well, not really. We got a little too abstractin our model. In our accountingof the time

requirementsfor all threemethods,we have madea grave andcommonerror: we have beentoo liberal aboutwhat

constitutesanelementarystep. In general,we oftenassumethat eacharithmeticsteptakesunit time, becausethe

numbersinvolved will be typically small enoughthat we can reasonablyexpect themto fit within a computer’s

word. Remember, thenumbern is only logn bits in length.But in thepresentcase,wearedoingarithmeticonhuge

numbers,with aboutn bits, wheren is pretty large. Whendealingwith suchhugenumbers,if exactcomputation

is requiredwe have to usesophisticatedlong integer packages.Suchalgorithmstake O
 n � time to addtwo n-bit

numbers.Hencethecomplexity of thefirst two methodswaslarger thanwe actuallythought:not really O
 Fn � and

O
 n � , but insteadO
 nFn � andO
 n2 � , respectively. Thesecondalgorithmis still exponentiallyfaster. Whatis worse,

thethird algorithminvolvesmultiplicationsof O
 n � -bit integers.Let M
 n � bethetimerequiredto multiply two n-bit

numbers.Thentherunningtimeof thethird algorithmis in factO
 M
 n ��� .
Thecomparisonbetweentherunningtimesof thesecondandthird algorithmsboils down to a mostimportant

andancientissue:can we multiply two n-bit integers faster than Ω
 n2 � ? This would befasterthanthemethodwe

learnin elementaryschoolor theclever halvingmethodexplainedin theopeningof thesenotes.

As afinal consideration,wemightconsiderthemathematicians’solutionto computingtheFibonaccinumbers.

A mathematicianwouldquickly determinethat

Fn
� 1�

5

���
1 � �

5
2 � n � �

1 � �
5

2 � n � �
Usingthis,how many operationsdoesit take to computeFn? Notethatthis calculationwould requirefloatingpoint

arithmetic.Whetherin practicethatwould leadto a fasteror sloweralgorithmthanoneusingjust integerarithmetic

mightdependon thecomputersystemonwhichyourun thealgorithm.

