Programming Assignment 1, REPORT, Russell Lowke March 13th 2004.

1) TABLE or graph listing average tree size for several values of n
When weights are randomized:

Av. tree weight for n = 2
av. over 10 tries: 0.62613 largest edge = 0.977158

Av. tree weight for n = 4
av. over 10 tries: 0.943949 largest edge = 0.740818
Av. tree weight for n = 8
av. over 10 tries: 1.18944 largest edge = 0.655816

Av. tree weight for n = 16
av. over 10 tries: 1.12869 largest edge = 0.298851

Av. tree weight for n = 32
av. over 10 tries: 1.22276 largest edge = 0.197784
Av. tree weight for n = 64
av. over 10 tries: 1.15055 largest edge = 0.104108

Av. tree weight for n = 128
av. over 10 tries: 1.22498 largest edge = 0.0620191

Av. tree weight for n = 256
av. over 10 tries: 1.19155 largest edge = 0.0353309

Av. tree weight for n = 512
av. over 10 tries: 1.21556 largest edge = 0.0178354

Av. tree weight for n = 1024
av. over 10 tries: 1.21546 largest edge = 0.0100831

Av. tree weight for n = 2048
av. over 10 tries: 1.19786 largest edge = 0.00508966

Av. tree weight for n = 4096
av. over 10 tries: 1.19768 largest edge = 0.00303103

Av. tree weight for n = 8192
av. over 10 tries: 1.20157 largest edge = 0.00123695

 tree weight for n = 30000
 over 1 try: 1.20443 largest edge = 0.000348025

 tree weight for n = 35000 over 1 try: 1.19882 largest edge = 0.000274436
[image: image1.wmf]
n v average tree weight for randomized weight *

[image: image2.wmf]
n v largest edge for randomized weight *

When weights are distances:

Av. tree weight for n = 2
av. over 10 tries: 0.540596
largest edge = 0.904742

Av. tree weight for n = 4
av. over 10 tries: 1.07053
largest edge = 0.65782

Av. tree weight for n = 8
av. over 10 tries: 1.7213
largest edge = 0.650102

Av. tree weight for n = 16
av. over 10 tries: 2.73812
largest edge = 0.471555

Av. tree weight for n = 32
av. over 10 tries: 3.7886
largest edge = 0.311492

Av. tree weight for n = 64
av. over 10 tries: 5.45684
largest edge = 0.292485

Av. tree weight for n = 128
av. over 10 tries: 7.58164
largest edge = 0.203531

Av. tree weight for n = 256
av. over 10 tries: 10.686
largest edge = 0.143603

Av. tree weight for n = 512
av. over 10 tries: 14.8958
largest edge = 0.0901973

Av. tree weight for n = 1024
av. over 10 tries: 21.1243
largest edge = 0.0673661

Av. tree weight for n = 2048
av. over 10 tries: 29.7679
largest edge = 0.0436024

Av. tree weight for n = 4096
av. over 10 tries: 41.6676
largest edge = 0.03428

Av. tree weight for n = 8192
av. over 10 tries: 58.9475
largest edge = 0.0198867

 tree weight for n = 30000 over 1 try: 112.443
largest edge = 0.0112098

 tree weight for n = 35000 over 1 try: 121.665
largest edge = 0.0113445
[image: image3.wmf]
n v average tree weight for weight by distance *

[image: image4.wmf]
n v largest edge for weight by distance *

*NOTE: Plotted n axis is logarithmic

2) A description of guess for the function f(n)

I was unable to curve fit the graph, but by plotting the n vs. the weight I could see that it might be exponential, and have the form A * e ^ (b n). But this curve wasn't the actual value of n... it was log n. So the actual form of the function is f(n) = A * e ^ (b (e ^ n)).

3) Briefly discuss

I chose to use Kruskal's algorithm, manly due to the methodology described in class for dealing with disjoint sets using path compression which optimizes Kruskal's and results in a rapid finding, linking and union of sets. This methodology of finding the set of a Vertex is log*(n) which is nice to have in the algorithm.

Aside from having to sort Edges, Kruskal's is a fast algorithm at O(m log*n), which is close to linear. To deal with the sorting of edges [the largest bottleneck of Kruskal's algorithm] I have adapted a version of Quicksort as outlined in "C Programming - A Modern Approach" by K.N.King pages 173-75.

The growth rates (f(n)) are very surprising. When the edge weight represented the distance between points, it was surprising to see how quickly the average tree weight increased. I plotted log n vs. the average weight and the graph was still an exponential, which was further surprising. As the edge weight represented random values in the [0, 1] range, it seemed to quickly taper off and hang at around 1.2. I expected the value to increase indefinitely (even if slowly).

I seeded the random number generator using the current time, but not feel the generator is all that random, particularly as

there is an obvious anomaly at n = 8 in the graph of "n v largest edge for randomized weight."

Much time was spent optimizing the Quicksort routine to allow for greater values of n to be computed. Oddly, the most dramatic speed enhancement occurred after specifying

bool operator< (Edge& other) {return edgeWeight < other.edgeWeight;}

in edge.hpp on line 19. This allowed the compiler to optimize the Edge comparisons and gave a factor of 12 increase in speed. Before this improvement the largest value of n I could feasibly compute 20 times in 40 minutes was 2048. The majority of the time in my Kruskal's algorithm was tested and shown to be the sorting portion.

After the time constraint was taken care of it became evident that there was a memory constraint at n > 8192. To relieve this problem I started omitting Edges. Looking at the data the largest edge size at n = 8192 was 0.0198867, so I felt it was safe to remove any edge larger .11, which is nearly a factor of 10 higher than this. With this implemented I could compute values of n as high as 35000.

Russell Lowke
