
CS 124 Lecture 14

14.1 Cryptography Fundamentals

Cryptography is concerned with the following scenario: two people, Alice and Bob, wish to communicate privately

in the presence of an eavesdropper, Eve. In particular, suppose Alice wants to send Bob a messagex. (For conve-

nience, we will always assume our message has been converted into a bit string.) Using cryptography, Alice would

compute a functione(x), the encoding ofx, using some secret key, and transmite(x) to Bob. Bob receivese(x),

and using his own secret key, would compute a functiond(e(x)) = x. The functiond provides the decoding of the

encodinge(x). Eve is presumably unable to recoverx from e(x) because she does not have the key – without the

key, computingx is either impossible or computationally difficult.

14.1.1 One-Time Pad

A classical cryptographic method is theone-time pad. A one-time pad is a random string of bitsr, equal in length to

the messagex, that Alice and Bob share and is secret. By random, here we mean thatr is equally like to be any bit

string of the right length,|r|. Alice computee(x) = x⊕ r; Bob computesd(e(x)) = e(x)⊕ r = x⊕ r⊕ r = x.

The claim is that Eve gets absolutely no information about the message by seeinge(x). More concretely, we

claim

Pr(message isx | e(x)) = Pr(message isx);

that is, knowinge(x) gives no more information to Eve than she already had. This is a nice exercise in condtional

probabilities.

Sincee(x) provides no information, the one-time pad is completely secure. (Notice that this does not rely

on notions of computational difficulty; Eve really obtains no additional information!) There are, however, crucial

drawbacks.

• The keyr has to be as long asx.

• The keyr can only be used once. (To see this, suppose we use the same keyr to encodex andy. The Eve can

computee(x)⊕ e(y) = x⊕ y, which might yield useful information!)

14-1

Lecture 14 14-2

• The keyr has to be exchanged, by some other means. (Private courier?)

14.1.2 DES

TheData Encrytpion Standard, or DES, is a U.S. government sponsored cryptographic method proposed in 1976. It

uses a 56 bit key, again shared by Alice and Bob, and it encodes blocks of 64 bits using a complicated sequence of

bit operations.

Many have suspected that the government engineered the DES standard, so that they could break it easily, but

nobody has shown a simpler method for breaking DES other than trying the 256 possible keys. These days, however,

trying even this large number of keys can be accomplished in just a few days with specialized hardware. Hence DES

is widely considered no longer secure.

14.1.3 RSA

RSA (named after its inventors, Ron Rivest, Adi Shamir, and Len Adleman) was developed around the same time as

DES. RSA is an example ofpublic key cryptography. In public key cryptography, Bob has two keys: a public key,

ke, known to everyone, and a private key,kd , known only to Bob. If Alice (or anyone else) wants to send a messagex

to Bob, she encrypts it ase(x) using the public key; Bob then decrypts it using his private key. For this to be secure,

the private key must be hard to compute from the public key, and similarlye(x) must be hard to compute fromx.

The RSA algorithm depends on some number theory and simple algorithms, which we will consider before

describing RSA. We will then describe how RSA isefficient andsecure.

14.2 Tools for RSA

14.2.1 Primality

For the time being, we will assume that it is possible to generate large prime numbers. In fact, there are simple and

efficientrandomized algorithms for generating large primes, that we will consider later in the course.

Lecture 14 14-3

14.2.2 Euclid’s Greatest Common Divisor Algorithm

Definition: Thegreatest common divisor (or gcd) of integersa,b ≥ 0 is the largest integerd ≥ 0 such thatd|a and

d|b, whered|a denotes thatd dividesa.

Example: gcd(360,84) = 12.

One way of computing the gcd is to factor the two numbers, and find the common prime factors (with the right

multiplicity). Factoring, however, is a problem for which we do not have general efficient algorithms.

The following algorithm, due to Euclid, avoids factoring. Assumea ≥ b ≥ 0.

function Euclid(a,b)

if b = 0 return(a)

return(Euclid(b,a modb))

end Euclid

Euclid’s algorithm relies on the fact that gcd(a,b) = gcd(b,a modb). You should prove this as an exercise.

We need to check that this algorithm is efficient. We will assume that mod operations are efficient (in fact they

can be done inO(log2 a) bit operations). How many mod operations must be performed?

To analyze this, we notice that in the recursive calls of Euclid’s algorithms, the numbers always get smaller.

For the algorithm to be efficient, we’d like to have only aboutO(loga) recursive calls. This will require the numbers

to shrink by a constant factor after a constant number of rounds. In fact, we can show that the larger number shrinks

by a factor of 2 every 2 rounds.

Claim 1: a modb ≤ a/2.

Proof: The claim is trivially true ifb ≤ a/2. If b > a/2, thena modb = a−b ≤ a/2.

Claim 2: On calling Euclid(a,b), after the second recursive call Euclid(a′,b′) hasa′ ≤ a/2.

Proof: For the second recursive call, we will havea′ = a modb.

14.2.3 Extended Euclid’s Algorithm

Euclid’s algorithm can be extended to give not just the greatest common divisord = gcd(a,b), but also two integers

x andy such thatax+ by = d. This will prove useful to us subsequently, as we will explain.

Lecture 14 14-4

Extended-Euclid(a,b)

if b = 0 return(a,1,0)

Computek such thata = bk +(a modb)

(d,x,y) = Extended-Euclid(b,a modb)

return((d,y,x− ky))

end Extended-Euclid

Claim 3: The Extended Euclid’s algorithm returns the correct answer.

Proof: By induction ona + b. It clearly works if b = 0. (Note the understanding that all numbers divide

0!) If b �= 0, then we may assume the recursive call provides the correct answer by induction, asa modb < a.

Hence we havex andy such thatbx +(a modb)y = d. But (a modb) = a− bk, and hence by substitution we get

bx+(a−bk)y = d, or ay+ b(x− ky) = d. This shows the algorithm provides the correct output.

Note that the Extended Euclid’s algorithm is clearly efficient, as it requires only a few extra arithmetic opera-

tions per recursive call over Euclid’s algorithm.

The Extended Euclid’s algorithm is useful if we wish to compute the inverse of a number. That is, suppose we

wish to finda−1 modn. The numbera has a multiplicative inverse modulon if and only if the gcd ofa andn is 1.

Moreover, the Extended Euclid’s algorithm gives us that number. Since in this case computing gcd(a,n) givesx,y

such thatax+ ny = 1, we have thatx = a−1 modn.

14.2.4 Exponentiation

Suppose we have to computexy mod z, for integersx,y,z. Multiplying x by itself y times is one possibility, but

it is too slow. A more efficient approach is to repeatedly square fromx, to getx2 mod z, x4 mod z, x8 mod z . . .,

x2	logy

mod z. Now xy can be computed by multiplying together moduloz the powers that correspond to ones in the

binary representation ofy.

14.3 The RSA Protocol

To create a public key, Bob finds two large primes,p andq, of roughly the same size. (Large should be a few hundred

decimal digits. Recently, with a lot of work, 512-bit RSA has been broken; this corresponds ton = pq being 512

Lecture 14 14-5

bits long.) Bob computesn = pq, and also computes a random integere, such that gcd((p−1)(q−1),e) = 1. (An

alternative to choosinge randomly often used in practice is to choosee = 3, in which casep andq cannot equal 1

modulo 3.)

The pair(n,e) is Bob’s public key, which he announces to the world. Bob’s private key isd = e−1 mod (p−
1)(q−1), which can be computed by Euclid’s algorithm. More specifically,(p,q,d) is Bob’s private key.

Suppose Alice wants to send a message to Bob. We think of the message as being a numberx from the range

[1,n]. (If the message is too big to be represented by a number this small, it must be broken up into pieces; for

example, the message could be broken into bit strings of length	logn
.) To encode the message, Alice computes

and sends to Bob

e(x) = xe modn.

Upon receipt, Bob computes

d(e(x)) = (e(x))d modn.

To show that this operation decodes correctly, we must prove:

Claim 4: d(e(x)) = x.

Proof: We use the steps:

e(x)d = xde = x1+k(p−1)(q−1) = x modn.

The first equation recalls the definition ofe(x). The second uses the fact thatd = e−1 mod(p−1)(q−1), and hence

de = 1+k(p−1)(q−1) for some integerk. The last equality is much less trivial. It will help us to have the following

lemma:

Claim 5: (Fermat’s Little Theorem) Ifp is prime, then fora �= 0 mod p, we haveap−1 = 1 mod p.

Proof: Look at the numbers 1,2, . . . , p−1. Suppose we multiply them all bya modulop, to geta ·1 mod p,a ·
2 mod p, . . . ,a · (p−1) mod p. We claim that the two sets of numbers are the same! This is because every pair of

numbers in the second group is different; this follows since ifa · i = a · j mod p, then by multiplying bya−1, we

must havei = j mod p. But if all the numbers in the second group are different modulop, since none of them are 0,

they must just be 1,2, . . . , p−1. (To get a feel for this, take an example: whenp = 7 anda = 5, multiplyinga by the

numbers{1,2,3,4,5,6} yields{5,3,1,6,4,2}.)

From the above equality of sets of numbers, we conclude

1 ·2 · · · (p−1) = (a ·1) · (a ·2) · · · (a · (p−1)) mod p.

Lecture 14 14-6

Multiplying both sides by 1−1,2−1, . . . ,(p−1)−1 we have

1 = ap−1 mod p.

This proves Claim 5.

We now return to the end of Claim 4, where we must prove

x1+k(p−1)(q−1) = x modn.

We first claim thatx1+k(p−1)(q−1) = x mod p. This is clearly true ifx = 0 mod p. If x �= 0 mod p, then by Fermat’s

Little Theorem,x(p−1) = 1 modp, and hencexk(p−1)(q−1) = 1 mod p, from which we havex1+k(p−1)(q−1) = x mod p.

by the same argument we also havex1+k(p−1)(q−1) = x modq. But if a number is equal tox both modulop and

moduloq, it is equal tox modulon = p ·q. Hencex1+k(p−1)(q−1) = x modn, and Claim 4 is proven.

We have shown that the RSA protocol allows for correct encoding and decoding. We also should be convinced

it is efficient, since it requires only operations that we know to be efficient, such as Euclid’s algorithm and modular

exponentiation. One thing we have not yet asked is why the scheme is secure. That is, why can’t the eavesdropper

Eve recover the messagex also?

The answer, unfortunately, is that there is no proof that Eve cannot computex efficiently from e(x). There

is simply a belief that this is a hard problem. It is an unproven assumption that there is no efficient algorithm for

computingx from e(x). There is the real but unlikely possibility that someone out there can read all messages sent

using RSA!

Let us seek some idea of why RSA is believed to be secure. If Eve obtainse(x) = xe modn, what can she do?

She could try all possible values ofx to try to find the correct one; this clearly takes too long. Or she could try to

factorn and computed. Factoring, however, is a widely known and well studied problem, and nobody has come up

with a polynomial time algorithm for the problem. In fact, it is widely believed that no such algorithm exists.

It would be nice if we could make some sort of guarantee. For example, suppose that breaking RSA allowed

us to factorn. Then we could say that RSA is as hard as factoring. Unfortunately, this is not the case either. It

is possible that RSA could be broken without providing a general factoring algorithm, although it seems that any

natural approach for breaking RSA would also provide a way to factorn.

