
Unbiasing Random Bits

Michael Mitzenmacher

1. Introduction

Most computers use a pseudo-random number generator in order to mimic
random numbers. While such pseudo-random numbers are sufficient for
many applications, they may not do in cases where more secure randomness
is needed, such as when you are generating a cryptographic key. For
example, years ago the security of the Netscape browser was broken when
people found how the seed for the pseudo-random number generator was
created. (See “Randomness and the Netscape Browser,” by Ian Goldberg
and David Wagner, in Dr. Dobb’s Journal, January 1996, pp. 66-70.)

When better randomness is required, software can be used to obtain
randomness from the computer system, including such behaviors as disk
movement, user keystrokes, mouse clicks, or sound recorded by a
microphone. While it is clear that many of these physical phenomena can
produce random events that are hard to predict, it is not clear how to distill
this randomness into something useful, such as random bits that are 0 half
the time and 1 half the time. For example, you might try using the number
of microseconds between keystrokes to generate random numbers,
outputting a 0 if the number of microseconds is even and 1 if the number is
odd. While it might be hard to accurately predict the number of
microseconds between user keystrokes, it may happen that some users
consistently end up with an odd number of microseconds between key
strokes 70% of the time.

In this article I will demonstrate a simple means of efficiently extracting
random bits from a possibly biased source of bits. I focus on a simple model
of a random source: it generates bits that are 0 with probability p and 1 with
probability q = 1 – p. Here p should be strictly between 0 and 1. Each bit is
independent; that is, whether it is 0 or 1 is not correlated with the value of
any of the other bits. I want to generate fair bits that are independent and are
0 and 1 each with probability ½.

For a more physical interpretation, I suggest the following. You have a coin,
and you would like to use it to generate random bits. Unfortunately, the coin
may be dented or weighted in some way you do not know about, so it might

be that it comes up heads with some probability p that does not equal ½.
Can you use coin to generate fair bits? Interestingly, you can do this even if
you do not know the value of p! This procedure has practical applications to
software that extracts randomness from biased sources, and also it leads to
some fun mathematics. The approach I describe is based on work by Yuval
Peres. (“Iterating von Neumann’s Procedure for Extracting Random Bits,”
Annals of Statistics, 20:1, March 1992, pp. 590-597.)

2. Extracting single bits

The first question to consider is how you can use the possibly biased coin to
generate just a single fair bit. (For a while, this question proved quite
popular at software developer interviews.) For convenience, I will talk
about the coin flips as coming up either heads or tails and the bits produced
as being 0s and 1s. The key insight you need, which has been attributed to
von Neumann, is to use symmetry. Suppose you flip the coin twice. If the
coin lands heads and then tails, you should output a 0. This happens with
probability pq. If instead the coin lands tails and then heads, you should
output a 1. This happens with probability qp = pq. In the case where the
coin provides two heads or two tails, you simply start over again. Since the
probability you produce a 0 or a 1 is the same for each pair of flips, you
must be generating fair bits. Note that our procedure does not even need to
know the value of p!

I can write the process described above as a procedure to extract random bits
from biased flips. The procedure looks at consecutive pairs of flips and
determines if they yield a fair bit. The variable NumFlips represents the
number of biased flips available.

Function ExtractBits (Flips[0,NumFlips-1])
for (j = 0; j < (NumFlips-1)/2; j++) {

if (Flips[2*j] == Heads) and (Flips[2*j+1] == Tails) print 0;
if (Flips[2*j] == Tails) and (Flips[2*j+1] == Heads) print 1;

}
}

The above function provides a good first step, but it does not seem very
efficient. The function discards pairs of flip when there are two heads
(probability p2) or two tails (probability q2 = (1-p)2). Using calculus or a
graphing calculator reveals that p2 + (1 – p)2 achieves its minimum value of

½ when p = ½. Hence no matter what the value of p is, the function throws
away a pair of flips at least half of the time.

More carefully, suppose I define a function B(p) to represent the average
number of fair bits I get per coin flip when the coin lands heads with
probability p. You should note that 0 < B(p) < 1; I can’t get more than 1 fair
bit out of even a fair coin! Also, B(p) is meant to represent a long-term
average; it ignores issues such as when you have an odd number of coin
flips, the last one is useless under this scheme. For every two flips, I get a
fair bit with probability 2pq, so B(p) = pq. When p = q = ½, so that my coin
is fair and I could conceivably extract 1 full fair bit per flip, B(p) is just ¼.

3. Make more use of symmetry

A better approach continues using symmetry beyond pairs of flips. For
example, suppose I flip two heads followed by two tails. In the original
extraction scheme, I obtain no fair bits. But if I decide that two heads
followed by two tails produces a 0, while two tails followed by two heads
produces a 1, then I maintain symmetry while increasing the chances of
producing a fair bit.

There is a nice way to visualize how to do this. Consider the original
sequence of flips. I build up a new sequence of flips in the following way:
whenever I get a pair of flips that are the same in the original sequence of
flips, I introduce a new flip of that type into the new sequence. An example
is given below:

Original: H T H H T H T T T T H T T H H H
Bits produced: 0 1 0 1
New sequence: H T T H
Bits produced: 0 1

Whenever a pair of flips is heads-tails or tails-heads, I generate a fair bit
using von Neumann’s approach. Whenver a pair is heads-heads or tails-
tails, I add a new coin flip to the new sequence. After I finish with the
original sequence of flips, I turn to the new sequence of flips to try to get
more fair bits. I append the fair bits from the new sequence to those
produced by the original sequence. Here, the final output would be 010101.
The new sequence looks for the symmetry between the sequences heads-
heads-tails-tails and tails-tails-heads-heads.

There is no reason to stop with just a single new sequence. I can use the
new sequence to generate another new sequence, recursively! For example,
suppose I change my example above slightly, to the following.

Original: H T H H T H H H T T H T T H T T
Bits produced: 0 1 0 1
New sequence: H H T T
Bits produced:
New sequence: H T
Bits produced: 0

You may notice now that my second level produces no extra fair bits, but if I
generate a further new sequence recursively, I obtain one more fair bit.

The recursive variation can be coded as follows:

Function ExtractBits (Flips[0,NumFlips-1])
NumNewFlips = 0;
for (j = 0; j < (n-1)/2; j++) {

if (Flips[2*j] == Heads) and (Flips[2*j+1] == Tails) print 0;
if (Flips[2*j] == Tails) and (Flips[2*j+1] == Heads) print 1;
if (Flips[2*j] == Heads) and (Flips[2*j+1] == Heads) {

NewFlips[NumNewFlips++] = Heads;
}
if (Flips[2*j] == Tails) and (Flips[2*j+1] == Tails) {

NewFlips[NumNewFlips++] =Tails;
}

}
if (NumNewFlips > 2) ExtractBits (NewFlips[0,NumNewFlips-1]);

}

I can again define a function B(p) to represent the average number of fair
bits I get per coin flip when the coin lands heads with probability p. For
every two flips, I again get a fair bit with probability 2pq; this adds pq fair
bits per coin flip, on average. If I don’t get a fair bit, I get a new flip. Recall
my coin gave two heads with probability p2 and two tails with probability q2,
so on average I get (p2 + q2)/2 additional recursive coin flips per original
coin flip. Also, each coin flip at the new level is heads with probability

p2/(p2 + q2) and tails with probability q2/(p2 + q2). (These values sum to 1,
and preserve the proper ratio between two heads and two tails.) So now I
can write the approriate equation: B(p) = pq + ((p2 + q2)/2)B(p2/(p2 + q2)).
While this equation does not appear to have a simple closed form, you can
use it to calculate specific values of B(p) recursively. Moreover, when p = q
= ½, this equation gives B(1/2) = ¼ + ¼ B(1/2), so B(1/2) = 1/3. While this
is an improvement for fair coins over the initial scheme, I am still pretty far
from the optimal of 1 fair bit per coin flip when the coin is fair. The
recursive extraction removes some of the waste, but there is still more to be
done.

4. Make even more use of symmetry

There is another symmetry that I can take advantage of that I have not used
yet. Consider the cases where the coin lands heads-heads-heads-tails and
heads-tails-heads-heads. Both sequences produce one fair bit and one flip
for the next sequence in the simple recursive scheme. But I have not taken
advantage of the order in which these two events happened; in the first
sequence, the fair bit was produced second, and in the second sequence, it
was produced first. The symmetry between these two situations can yield
another fair bit!

I can give an easy way to extract this extra bit, again using the idea of
creating an additional sequence of coin flips. From my original sequence, I
can derive a new sequence that gives me a biased coin flip for each
consecutive pair of original flips. If the two flips are the same, I get a heads;
if the two flips are different, I get a tails. I then apply von Neumann’s
scheme to the new sequence as well as the original sequence, as in the
example below.

Original: H T H H T H T T T T H T T H H H
Bits produced: 0 1 0 1
New sequence: H T H T T H H T
Bits produced: 0 0 1 0

I can again glue together the two outputs to obtain 01010010.

Now I can also use the additional sequence from the last section. So when I
start with an original sequence, I use it to derive two further sequences, as

shown below. It turns out that if I glue all the bits together, I get
independent and fair bits.

Original: H T H H T H T T T T H T T H H H
Bits produced: 0 1 0 1
New sequence A: H T H T T H H T
Bits produced: 0 0 1 0
New sequence B: H T T H
Bits produced: 0 1

Of course, I can go further by recursively extracting more bits from each
sequence. That is, each new sequence should generate two further new
sequences, and so on. This recursive construction is easy to code.

Function ExtractBits (Flips[0,NumFlips-1])
NumNewFlipsA = 0;
NumNewFlipsB = 0;
for (j = 0; j < (NumFlips-1)/2; j++) {

if (Flips[2*j] == Heads) and (Flips[2*j+1] == Tails) {
print 0;
NewFlipsA[NumNewFlipsA++] = Heads;

}
if (Flips[2*j] == Tails) and (Flips[2*j+1] == Heads) {

print 1;
NewFlipsA[NumNewFlipsA++] = Heads;

}
if (Flips[2*j] == Heads) and (Flips[2*j+1] == Heads) {

NewFlipsB[NumNewFlipsB++] = Heads;
NewFlipsA[NumNewFlipsA++] = Tails;

}
if (Flips[2*j] == Tails) and (Flips[2*j+1] == Tails) {

NewFlipsB[NumNewFlipsB++] = Tails;
NewFlipsA[NumNewFlipsA++] = Tails;

}
}
if (NumNewFlipsA > 2) ExtractBits (NewFlipsA[0,NumNewFlipsA-

1]);
if (NumNewFlipsB > 2) ExtractBits (NewFlipsB[0,NumNewFlipsA-

1]);
}

In all of the procedures I have given so far, I have designed them
recursively, so the bits from one sequence are output before the bits from the
derived sequences are output. You may be wondering if this is important.
In fact you must be somewhat careful to make sure that you do not introduce
correlations by ordering the bits in an unusual fashion. The recursive
approach I have described is known to be safe, so I recommend sticking with
it.

I can again write an equation that determines the long-term average number
of bits produced per flip. The equation is similar to the previous case,
except now for every two flips we also get an additional flip in one of our
derived sequences. This flip is heads with probability p2 + q2, since it comes
up heads whenever the pair of flips are the same. Hence I have the resulting
equation:
 B(p) = pq + ((p2 + q2)/2)B(p2/(p2 + q2)) + (1/2)B(p2 + q2).
If I again test B(1/2), I find B(1/2) = ¼ + ¼B(1/2) + ½B(1/2), so B(1/2) = 1.
Now if you flip a fair coin, you expect in the long run to get out 1 fair bit per
flip using this recursive procedure. We are finally doing essentially as good
as we could hope for!

In fact in the limit this process extracts the maximum number of fair bits
possible for every value of p. To prove this requires knowing some
information theory. You need to know that the maximum rate at which fair
bits can be produced from bias bits is given by the entropy function, usually
denoted by H(p) = plog2(1/p) + qlog2(1/q). The complex looking equation
above has a very straightforward solution; B(p) equals the entropy H(p).
You can verify this by plugging B(p) = H(p) into the recurrence. It is easiest
to first calculate term by term, and to use the fact that when p + q = 1, you
have 1 - p2 + q2 = 2pq. Suppose B(p) = H(p). Then we first calculate easier
expressions for the terms on the right hand side.

() ()() () ()()

() qqppqpqp

qqpqpqpp

q
qp

qp
q

p
qp

qp
pqp

qp
pBqp

2
2

2
222

2
22

2
2

22
2

22
2

22
2

2

2

22
222

2

2

22
222

222

22

222

logloglog2

loglog2loglog2

loglog2

2

−−+

 +=

−+

+−+

=

 +

+

+

 +

+

 +=

+

 +

() () ()

() () () qpqppqpqqpqp

pqpqqpqp

qp
qp

qp
qp

qpB

22
22

2
22

2
22

2
22

222
22

222
22

22

logloglog2

2loglog2

1
1log2

11log2

)(2
1

−−−+

 +−=

−+

 +−=

+−

 +−+

+

 +=

+

Now we check that the right hand side comes out to H(p)=B(p).

)()/1(log)/1(log
)(log)()(log)(

log)(log)(loglog

)(2
1

2

22

22

222
2

2
2

22
22

222

pHqqpp
qqpqpqpp

qpqppqqqpp

qpB
qp

pBqppq

=+=
+−+−=

−−−−=

++

+

 ++

5. Conclusions

Although I have given some basic psuedo-code, you might find it interesting
to try to write more efficient versions of the code on your own. There is a
collections of implementations and related links at
http://www.ciphergoth.org/software/unbiasing, and Peres’s work has been
the subject of discussion on the sci.crypt newsgroup.

