CS E-124—-Spring, 2003 Programming Assignment 3 Out: April 17, 2003
Due: May 8, 2003

For this programming assignment, you will implement a number of heuristics for solvinguks iR PAR-
TITION problem, which is (of course) NP-complete. As input, the number partition problem takes a sequence
A= (a,a,...,ay) Of non-negative integers. The output is a sequedee(s,s,,...,S) of signss € {—1,+1}
such that theesidue
n
leai
i=

is minimized. Another way to view the problem is the goal is to split the set (or multi-set) of numbers given by
into two subset#y andA; with roughly equal sums. The absolute value of the difference of the sums is the residue.

U=

As a warm-up exercise, you will first prove that even though Number Partition is NP-complete, it can be solved
in pseudo-polynomial time. That is, suppose the sequence of terfnsuim up to some numbér Then each of the
numbers inA has at most lob bits, so a polynomial time algorithm would take time polynomiahiogb. Instead
you should find a dynamic programming algorithm that takes time polynomiad.in

Give a dynamic programming solution to the Number Partition problem.

One deterministic heuristic for the Number Partition problem is the Karmarkar-Karp algorithm, or the KK
algorithm. This approach usegferencing. The differencing idea is to take two elements frépncall thema and
aj, and replace the larger bg — a;| while replacing the smaller by 0. The intuition is that if we decide togut
anda; in different sets, then it is as though we have one element of|gizen;| around. An algorithm based on
differencing repeatedly takes two elements frArand performs a differencing until there is only one element left;
this element equals an attainable residue. (A sequence ofgtgasyields this residue can be determined from the
differencing operations performed in linear time by two-coloring the gi@pk) that arises, wherE is the set of
pairs(a;,a;) that are used in the differencing steps. You will not need to construatftitethis assignment.)

For the Karmarkar-Karp algorithm suggests repeatedly taking the largest two elements remakatgach
step and differencing them. For exampleAifs intially (10,8,7,6,5), then the KK algorithm proceeds as follows:

(10,8,7,6,5) — (2,0,7,6,5)
— (2,0,1,0,5)
- (0,0,1,0,3)
— (0,0,0,0,2)

Hence the KK algorithm returns a residue of 2. The best possible residue for the example is 0.

Explain briefly how the Karmarkar-Karp algorithm can be implemented in O(nlogn) steps, assuming
thevaluesin A are small enough that arithmetic operations take one step.

You will compare the Karmarkar-Karp algorithm and a variety of randomized heuristic algorithms on random
input sets. Let us first discuss two ways to represent solutions to the problem and the state space based on thes
representations. Then we discuss heuristic search algorithms you will use.

The standard representation of a solution is simply as a seq&uite 1 and—1 values. A random solution
can be obtained by generating a random sequenecesath values. Thinking of all possible solutions as a state
space, a natural way to define neighbors of a soluias the set of all solutions that differ fro&in either one
or two places. This has a natural interpretation if we think oftieand—1 values as determining two subséts

andA; of A. Moving from Sto a neighbor is accomplished either by moving one or two elementsAamA,, or
moving one or two elements froly to A1, or swapping a pair of elements where one igjand one is inf.

A random move on this state space can be defined as follows. Choose two random indicg$ from [1, |
with i # j. Sets to —s and with probability ¥2, sets; to —s;.

An alternative way to represent a solution call@épartitioning is as follows. We represent a solution by a
sequencd® = {ps, P2,--., Pn} Wherep; € {1,...,n}. The sequencP represents a prepartitioning of the elements of
A, in the following way: ifp = pj, then we enforce the restriction thatanda; have the same sign. Equivalently,
if pi = pj, thena anda; both lie in the same subset, eithror A,.

We turn a solution of this form into a solution in the standard form using two steps:

e We derive a new sequendée from A which enforces the prepartioning frof EssentiallyX is derived by
resettinga to be the sum of all valuegwith p; =i, using for example the following pseudocode:

A =(0,0,...,0)
for j=1ton
&, =&, + 3

e We run the KK heuristic algorithm on the resilt

For example, ifA is initially (10,8,7,6,5), the solutionP = (1,2,2,4,5) corresponds to the following run of
the KK algorithm:

A= (10,8,7,6,5) — A =(10,15,0,6,5)
(10,15,0,6,5) — (0,5,0,6,5)
— (0,0,0,1,5)
— (0,0,0,0,4)

Hence in this case the solutiéhhas a residue of 4.

Notice that all possible solution sequen&xsan be generated using this prepartition representation, as any split
of Alinto sets”A; andA, can be obtained by initially assignimgto 1 for allg; € A; and similarly assigningp to 2
for all g € As.

A random solution can be obtained by generating a sequenceadfies in the rangfL, n| and using this foP.
Thinking of all possible solutions as a state space, a natural way to define neighbors of a $vlstamthe set of
all solutions that differ fronf in just one place. The interpretation is that we change the prepartitioning by changing
the partition of one element. Aandom move on this state space can be defined as follows. Choose two random
indicesi and j from [1,n] with p # j and setp; to j.

You will try each of the following three algorithms for both representations.

e Repeated random: repeatedly generate random solutions to the problem, as determined by the representation.

Start with a random solutio8
for iter = 1 to maxiter

S = a random solution

if residugS) < residugS) then S=S
returnS

e Hill climbing: generate a random solution to the problem, and then attempt to improve it through moves to
better neighbors.

Start with a random solutio8
for iter = 1 to maxiter

S = arandom neighbor d®

if residué¢S) < residuéS) then S=S
returnS

e Simulated annealing: generate a random solution to the problem, and then attempt to improve it through moves
to neighbors, that are not always better.

Start with a random solutio8
for iter = 1 to maxiter

S = arandom neighbor d&

if residugS) < residugS) then S=S

else S= S with probability exp{(res@)-res@))/T (iter))
returnS

Note that one could also have the code return the best solution seen thus far; in practice the two procedures
are essentially the same if the process is run for enough iterations.

You will run experiments on sets of 100 integers, with each integer being a random number chosen uniformly
from the rangd1,10'2]. Note that these are big numbers. You should use 64 bit integers. Pay attention to things like
whether your random number generator works on ranges this large!

Below is the main problem of the assignment.

Generate 50 random instances of the problem as described above. For each instance, find theresult from
using the Karmarkar-Karp algorithm. Also, for each instance, run a repeated random, a hill climbing, and
asimulated annealing algorithm, using both representations, each for at least 25,000 iterations. Comparethe
results and discuss.

For the simulated annealing algorithm, you must choosmhng schedule. That is, you must choose a function
T(iter). We suggest T(iter) = 18(0.8)Lt€1/300 for numbers in the rangd, 10+?], but you can experiment with this
as you please.

Note that, in our random experiments, we began with a random initial starting point.

Discuss briefly how you could use the solution from the Karmarkar-Karp algorithm as a starting point
for the randomized algorithms, and suggest what effect that might have. (No experiments are necessary.)

