
CS 124 Lecture 21

We now consider a natural problem that arises in many applications, particularly in conjunction with suffix

trees, which we will study later. Suppose we have a rooted tree T with n nodes. We would like to be able to answer

questions of the following form: what is the least common ancestor of nodes u and v; that is, what is the common

ancestor of u and v closest to the root?

In this setting, we will not be answering a single questions, but many questions on the same fixed tree T . If

we are given the tree T in advance, we can design an appropriate data structure for answering future queries. Our

algorithm will therefore be measured on several criteria. Of course one important criterion is the query time, or the

time to answer a specific query. However, a second consideration is how much preprocessing time, or time to set up

the data structure, is required to answer the questions. A third related aspect to study is the memory required to store

the data structure.

For example, a trivial algorithm for the problem is to consider each pair of vertices, and compute their least

common ancestor by following both paths toward the root until the first shared vertex is found. Then all the the

answers can be stored in a table. There are
(n

2

)
pairs of vertices, so our table will require Θ(n2) space. Queries can

be answered by a table lookup, which is constant time. Preprocessing, however, can require Θ(n3) time.

The problem of designing an appropriate data structure for this is called the Least Common Ancestor (LCA)

Problem. We will show that there is an algorithm for LCA that require only linear preprocessing time and memory,

but still answers any query in constant time! This result is as efficient as we could hope for.

We will reduce the LCA problem to a seemingly different but in fact quite related problem, called the Range

Minimum Query (RMQ) Problem. The RMQ problem applies to an array A of length n of numbers. We would like

to be able to answer questions of the following form: given two indices i and j, what is the index of the smallest

element in the subarray A[i . . . j]? Again, we may prepocess the array A to derive some alternative data structure to

answer the questions quickly. There is a trivial solution for the RMQ problem completely similar to the one above

for the LCA problem.
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21.1 Reduction: From LCA to RMQ

How to we convert an LCA problem to an RMQ problem? Note that we must do the conversion in linear time, if we

are going to totally complete the preprocessing in linear time for the LCA problem.

Linear time suggests that we want to do a tree traversal. In fact, the observation we will use is that the LCA of

nodes u and v is just the shallowest node encountered between visiting u and v during a depth first search of the tree

starting at the root. So let us do a DFS on the tree, and we can record in an array V the nodes we visit. An example

is shown in Figure 1. Notice each node can appear multiple times, but the total length of the array is 2n−1, where n

is the number of nodes in the tree. Each of the n−1 edges yields two values in the array, one when we go down the

edge and one when we go up the edge. The first value is the root. Also, from now on we will refer to each node by

its number on the DFS search.

We will also require two further arrays. The Level Array is derived from V ; L[i] is the distance from the root

of V [i]. Adjacent elements in L can only differ by +1 or −1, since adjacent steps in the DFS are connected by an

edge. Finally, R[i] is the representative array; R[i] contains the first index of V that contains the value i. (Actually,

any occurrence of i can be stored in R[i], but we might as well choose a specific one.)

Clearly, to compute LCA(u,v) it suffices to compute RMQ(R[u],R[v]) over the array L. This gives us the index

of the shallowest node between u and v, and the array V can be used to determine the actual node from the index.

21.2 Solutions for RMQ

We first note that we can do better than the naive Θ(n3) preprocessing time for RMQ on an array A by doing a trivial

dynamic programming, using the recurrence

RMQ(i, j) = A−1[min(A[RMQ(i, j−1)],A[ j])].

Here we are using convenient notation. Clearly min(A[RMQ(i, j− 1)],A[ j]) gives the value A[k], where A[k] is the

smallest value that in the subarray A[i . . . j]. However, we want the index of this value. We use the notation A−1 to

represent that we want the index of this value; note that if multiple indices have this value, we do not particularly

care which index we obtain. Each table entry can be calculated in constant time by building the table in order of

ranges [i, j] of increasing size, leading to preprocessing time Θ(n2).

In fact, we can reduce our table size and memory using a different dynamic program, and by using a few

additional operations per query. Let us create a table M(i, j) such that M(i, j) = A−1[mink∈[i,i+2 j )A[k]]. That is,
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M(i, j) contains the location of the minimum value over the 2j positions starting from i. This table has size O(n log n),

and it can easily be filled in O(n log n) step by using dynamic programming, based on the fact that M(i, j) can be

determined from M(i, j−1) and M(i+ 2j−1, j−1).

How do we use the M(i, j) to compute RMQ(i, j), if j is not a power of 2? We may use two overlapping

intervals that cover the range [i, j] as follows. Let k = �log( j− i+ 1)�, so that 2k is the largest power of 2 such that

i + 2k ≤ j + 1. Then RMQ(i, j) = A−1[minA[M(i,k)],A[M( j− 2k,k)]], and this can be computed in constant time

from the M.

We have shown that we can achieve preprocessing time and memory size Θ(n log n) while maintaining con-

stant query time. Interestingly, this method can be enhanced so as to require preprocessing time and memory size

Θ(n log log n) through a recursive construction. (This will be an exercise.) In practice, such a result would probably

be good enough – log log n is quite small for reasonable values of n. By continuing the recursive construction for

further levels, we could even achieve Θ(n log log logn) preprocessing time and memory size, and so on for any fixed

number of logs, while maintaining constant query time. However, this recursive construction would add significant

complexity to an actual program, and it still would not lead us to a linear preprocessing time solution.

21.3 ±1 RMQ

In order to achieve linear preprocessing, we will use an additional fact about the RMQ problem we obtain from

the reduction from LCA. Recall that our RMQ problem is on the Level Array obtained from the LCA problem.

The Level Array has one additional property that we are not yet taking advantage of: each entry differs from the

previous entry by +1 or −1. We can take advantage of this fact to split the RMQ problem into a different set of

small subproblems in such a way that we can avoid some work by doing table look-ups.

The split works as follows: partition A into blocks of size logn
2 . Let X [1, . . . ,2n/ log n] and Y [1, . . . ,2n/ log n] be

arrays such that X [i] stores the minimum element in the ith block of A, and Y [i] stores the position in the ith block

where the element X [i] occurs. Now to answer an RMQ query for indices i and j with i < j on the array A, we can

do the following:

1. If i and j are in the same block, we can perform an RMQ on this block. Notice that this requires that each

block be preprocessed.

2. If i and j are in different blocks, we have to compute the following values, and take the minimum of them:
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(a) The minimum from position i to the end of i’s block.

(b) The minimum from the beginning of j’s block to position j.

(c) The minimum of all blocks between i’s block and j’s block.

Steps 2a and 2c also require that we preprocess for RMQ queries on each block. Step 2b requires that we

perform an RMQ over the array X . Assuming we have done all this preprocessing, the total query time is still

constant. However, if we preprocess each block in order to do RMQ’s, we have not saved on the running time. We

need a faster way to deal with preprocessing each block.

How can we possibly avoid preprocessing each block separately? We use the following observation. Consider

two arrays X and X ′. Suppose that these two arrays differ by a constant at each position; for example, the arrays

might be 1,2,3,4,3,2 . . . and 3,4,5,6,5,4 . . . and. Then the RMQ answers, which give the index of the minimum

element, will be the same for these two arrays. Hence we can “share” the preprocessing used for these two arrays!

Another way to explain this is that in the ±1 RMQ problem, the initial value of the array does not matter, only

the sequence of +1 and −1 values are necessary to determine the answer. Now, how many different such sequences

are there? Since there are only logn/2 elements in a block, there are only (log n/2)−1 values in the sequence of +1

and −1 values. Hence there are only 2(log n/2)−1 =
√

n/2 possible sequences. This number is so small, we can afford

to compute and store tables for every possible sequence! Even if we use quadratic preprocessing time and memory,

these tables would take time O(
√

n log2 n) to preprocess and O(
√

n log2 n) memory. For each block in A, we have to

determine which table to use; this can easily be done in linear time.

21.4 Back to the standard RMQ

We have shown that ±1 RMQ problems can be solved with linear time preprocessing, and therefore we have a linear

time preprocessing solution for LCA. What about the general RMQ problem? It turns out that we can also reduce

the RMQ problem to the LCA problem in linear time. So we can obtain a linear time solution the general RMQ

problem, by turning it into an LCA problem, and solving that as a ±1 RMQ problem! The details of this reduction

are omitted here.
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V:  0  1  2  1  3  1  0  4  0  5  6  5  7  8  7  5  9  5  0
L:  0  1  2  1  2  1  0  1  0  1  2  1  2  3  2  1  2  1  0

R:  0  1  2  4  7  9  10  12  13  16

Figure 1: Changing an LCA problem into an RMQ problem.


