CS124 CourseNotes 1 Spring 2001

An algorithmis arecipeor awell-definedprocedurdor performingacalculationor in generalfor transforming
someinputinto a desiredoutput. Perhapghe mostfamiliar algorithmsarethosethosefor addingandmultiplying
integers.Hereis amultiplicationalgorithmthatis differentfrom the standardlgorithmyou learnedn school:write
the multiplier andmultiplicandsideby side. Repeathefollowing operations divide the first numberby 2 (throw
outary fractions)andmultiply theseconday 2, until thefirst numberis 1. Thisresultsin two columnsof numbers.
Now crossout all rows in which thefirst entryis even,andaddall entriesof the secondcolumnthathaven't been

crosseaut. Theresultis the productof thetwo numbers.

In this coursewe will aska hnumberof basicquestionsaboutalgorithms:

e Doesit halt?

The answerfor the algorithmgiven above is clearly yes, provided we are multiplying positive integers. The
reasons thatfor ary integergreatethanl, whenwe divideit by 2 andthrow outthefractionalpart,we always
getasmallerintegerwhichis greatetthanor equalto 1. Henceourfirst numberis eventuallyreducedo 1 and

theprocesdalts.

e Isit correct?
To seethatthe algorithmcorrectlycomputedhe productof theintegers,obsere thatif we write a0 for each
crossedout row, and 1 for eachrow thatis not crossedout, thenreadingfrom bottomto top just givesus
thefirst numberin binary Therefore the algorithmis just doing standardnultiplication, with the multiplier
writtenin binary

e Isit fast?
It turnsoutthatthe above algorithmis aboutasfastasthe standardalgorithmyou learnedn school.Laterin
thecoursewe will studya fasteralgorithmfor multiplying integers.

¢ How muchmemorydoesit use?

Thememoryusedby this algorithmis alsoaboutthe sameasthatof standardalgorithm.

The history of algorithmsfor simple arithmeticis quite fascinating. Although we take thesealgorithmsfor

granted their widespreaduseis surprisinglyrecent. The key to goodalgorithmsfor arithmeticwasthe positional

11

1-2

75 29 29
37 58 x 1001011
I8—3116 29
9 232 58
—4——464 232
—2—028 1856
1 1856 2175
2175

Figurel.1: A differentmultiplicationalgorithm.

numbersystem(suchasthe decimalsystem). Romannumerals(l, Il, IIl, IV, V, VI, etc) arejust the wrong data
structurefor performingarithmeticefficiently. The positionalnumbersystemwas first inventedby the Mayan
Indiansin CentralAmericaabout2000yearsago. They useda base20 systemandit is unknavn whetherthey had
inventedalgorithmsfor performingarithmetic,sincethe Spanishtconquerorslestryed mostof the Mayanbookson

scienceandastronomy

Thedecimalsystenthatwe usetodaywasinventedin Indiain roughly600AD. This positionalnumbersystem,
togethemwith algorithmsfor performingarithmetic weretransmittedo Persiaaround750AD, whenseveralimpor
tantindianworksweretranslatednto Arabic. Aroundthis time the Persiamrmathematiciai\l-Khwarizmiwrotehis
Arabic textbook on the subject. The word “algorithm” comesfrom Al-Khwarizmi’s name. Al-Khwarizmi’s work
wastranslatednto Latin around1200AD, andthe positionalnumbersystemwas propagatedhroughoutEurope
from 1200to 1600AD.

The decimalpoint was not inventeduntil the 16" centuryAD, by a Syrian mathematiciaral-Uglidisi from
DamascusHis work wassoonforgotten,andfive centuriepassedeforedecimalfractionswerere-irventedby the

Persiammathematiciaml-Kashi.

With theinventionof computersn this century thefield of algorithmshasseenexplosie growth. Therearea

numberof majorsuccessein thisfield:

e Parsingalgorithms- theseform the basisof thefield of programmindanguages

FastFouriertransform- thefield of digital signalprocessings built uponthis algorithm.

Linearprogramming this algorithmis extensvely usedin resourcescheduling.

Sortingalgorithms- until recently sortingusedup the bulk of computercycles.

Stringmatchingalgorithms- theseareextensvely usedin computationabiology.

1-3

o Numbertheoreticalgorithms- thesealgorithmsmalke it possibleto implementcryptosystemsuchasthe RSA

publickey cryptosystem.

o Compressiomlgorithms- thesealgorithmsallow usto transmitdatamoreefficiently over, for example phone

lines.

e Geometricalgorithms- displayingimagesquickly on a screenoften makesuseof sophisticatedlgorithmic

techniques.

In designingan algorithm, it is often easierandmore productie to think of a computerin abstracterms. Of
course,we mustcarefully chooseat what level of abstractiorto think. For example,we could think of computer
operationsn termsof a high level computedanguagesuchasC or Java, or in termsof anassemblyanguage We

coulddip furtherdown, andthink of the computerat thelevel AND andNOT gates.

For mostalgorithmdesignwe undertak in this coursejt is generallycorvenientto work at a fairly highlevel.
We will usuallyabstractway eventhe detailsof the high level programmindanguageandwrite our algorithmsin
"pseudo-code”withoutworrying aboutimplementatiordetails.(Unless,of course we aredealingwith a program-
ming assignment!Sometimesve have to be carefulthatwe do not abstractway essentiafeaturesf the problem.

Toillustratethis, let usconsidera simplebut enlighteningexample.

1.1 Computing the nth Fibonacci number

Remembethe famoussequencef numbersnventedin the 15th centuryby the Italian mathematiciareonardo
Fibonacci?The sequencés representedsy, F1, ..., whereFy = 0, F; = 1, andfor all n > 2, F, is definedas
Fn_1+ Fn_2. Thefirst few Fibonaccinumbersare0,1,1,2,3,5,8,13 21,34,55,... Thevalueof F3p is greatetthana
million! It is easyto seethatthe Fibonaccinumbersgrow exponentially As anexercise try to shaw that R/, > 27/2

for suficiently large n by a simpleinduction.

Hereis a simpleprogramto computeFibonaccinumberghatslavishly follows the definition.

functionF (n: integer): integer
if n=0thenreturn0O
elseif n= 1thenreturnl

elsereturnF(n—1) 4+ F(n—2)

1-4

Theprogramis obviously correct.However, it is woefully slow. As it is arecursve algorithm,we cannaturally
expressts runningtime oninputn with arecurrence equation. In fact,wewill simply countthe numberof addition
operationghe programuseswhichwe denoteby T (n). To developarecurrencequationwe expressT (n) in terms

of smallervaluesof T. We shallseeseveralsuchrecurrenceelationsin this class.
It is clearthatT (0) = 0 andT (1) = 0. Otherwisefor n> 2, we have
TN)=T(h—1)+T(n—2)+1,

becaus¢o computerf (n) we computeF (n— 1) andF (n— 2) anddo oneotheradditionbesides.This is (almost)
the Fibonacciequation!Hencewe canseethatthenumberof additionoperationss growing very large; it is atleast
22 for n> 4.

Can we do better? This is the questionwe shall always ask of our algorithms. The troublewith the naive
algorithmthewastefulrecursionthefunctionF is calledwith thesameargumentover andover again,exponentially
mary times(try to seehow mary timesF (1) is calledin the computatiorof F(5)). A simpletrick for improving
performancas to avoid repeatedtalculations.In this case this canbe easilydoneby avoiding recursionandjust
calculatingsuccesske values:

functionF (n: integer): integerarrayA[O. .. n] of integer
A0 =0;Al1] =1

fori=2tondo:

Alil=Ai—1+Ali—2

returnA[n|

This algorithmis of coursecorrect.Now, however, we only don— 1 additions.

It seemghatwe have comesofar, from exponentialto polynomially mary operationsthatwe canstophere.
But in the backof our headswe shouldbe wonderingan we do even better? Surprisingly we can. We rewrite our

eguationsn matrix notation.Then

Fr)y (01 Fo
/) \11 F
Similarly,
R\ (01 R\ (01 e
) \11)\r) (11) \R)
andin general Similarly, N
Fny (01 Fo

1-5

So,in orderto computer,, it sufiicesto raisethis 2 by 2 matrix to the nth power. Eachmatrix multiplication
takes 12 arithmeticoperationsso the questionboils down to the following: how many multiplications does it take
to raise a base (matrix, number, anything) to the nth power? Theansweiis O(logn). To seewhy, considerthecase
wheren > 1is apower of 2. To raiseX to thenth pawer, we computeX™? andthensquaret. Hencethe numberof
multiplicationsT (n) satisfies

T(n)=T(n/2)+1,

from which we find T(n) = logn. As an exercise,considerwhat you have to do whenn is not a power of 2.
(Hint: considerthe connectiorwith the multiplicationalgorithmof thefirst section;theretoo we repeatedlyhalved

anumber.)

Sowe have reducedthe computationtime exponentiallyagain,from n— 1 arithmeticoperationgo O(logn),
a greatachizement. Well, not really. We got a little too abstractin our model. In our accountingof the time
requirementgor all threemethodswe have madea grave andcommonerror: we have beentoo liberal aboutwhat
constitutesan elementarystep. In generalwe often assumehat eacharithmeticsteptakesunit time, becausehe
numbersinvolved will be typically small enoughthat we canreasonablyexpectthemto fit within a computers
word. Rememberthenumbem is only logn bitsin length.But in the presentase we aredoingarithmeticon huge
numberswith aboutn bits, wheren is pretty large. Whendealingwith suchhugenumbersjf exactcomputation
is requiredwe have to usesophisticatedong integer packages.Suchalgorithmstake O(n) time to addtwo n-bit
numbers.Hencethe compleity of thefirst two methodswvaslargerthanwe actuallythought: not really O(F,) and
O(n), but insteadO(nF,) andO(n?), respectiely. Thesecondalgorithmis still exponentiallyfaster Whatis worse,
thethird algorithminvolvesmultiplicationsof O(n)-bit integers.Let M(n) bethetime requiredto multiply two n-bit

numbersThentherunningtime of thethird algorithmis in factO(M(n)).

The comparisorbetweerthe runningtimesof the secondandthird algorithmsboils down to a mostimportant
andancientissue:can we multiply two n-bit integers faster than Q(n?) ? This would be fasterthanthe methodwe

learnin elementanschoolor the clever halvingmethodexplainedin the openingof thesenotes.

As afinal considerationwe might consideithe mathematicianssolutionto computingthe Fibonaccinumbers.
A mathematicianvould quickly determinghat
1

sl (7))

Usingthis, how mary operationgloesit take to computeF,? Notethatthis calculationwould requirefloating point

Fn —

arithmetic.Whetherin practicethatwould leadto afasteror slowver algorithmthanoneusingjustintegerarithmetic

might dependn the computersystemon which you run thealgorithm.

