
CS124 Lecture 8 Spring 2000

Divide and Conquer

We have seen one general paradigm for finding algorithms: the greedy approach. We now consider another

general paradigm, known as divide and conquer.

We have already seen an example of divide and conquer algorithms: mergesort. The idea behind mergesort is to

take a list, divide it into two smaller sublists, conquer each sublist by sorting it, and then combine the two solutions

for the subproblems into a single solution. These three basic steps – divide, conquer, and combine – lie behind most

divide and conquer algorithms.

With mergesort, we kept dividing the list into halves until there was just one element left. In general, we may

divide the problem into smaller problems in any convenient fashion. Also, in practice it may not be best to keep

dividing until the instances are completely trivial. Instead, it may be wise to divide until the instances are reasonably

small, and then apply an algorithm that is fast on small instances. For example, with mergesort, it might be best to

divide lists until there are only four elements, and then sort these small lists quickly by insertion sort.

Maximum/minimum

Suppose we wish to find the minimum and maximum items in a list of numbers. How many comparisons does

it take?

A natural approach is to try a divide and conquer algorithm. Split the list into two sublists of equal size. (Assume

that the initial list size is a power of two.) Find the maxima and minima of the sublists. Two more comparisons then

suffice to find the maximum and minimum of the list.

Hence, if T (n) is the number of comparisons, then T (n) = 2T (n/2) + 2. (The 2T (n/2) term comes from

conquering the two problems into which we divide the original; the 2 term comes from combining these solutions.)

Also, clearly T (2) = 1. By induction we find T (n) = (3n/2)−2, for n a power of 2.

Integer Multiplication

The standard multiplication algorithm takes time Θ(n2) to multiply together two n digit numbers. This algo-

rithm is so natural that we may think that no algorithm could be better. Here, we will show that better algorithms

8-1



Lecture 8 8-2

exist (at least in terms of asymptotic behavior).

Imagine splitting each number x and y into two parts: x = 10n/2a+ b,y = 10n/2c+ d. Then

xy = 10nac+ 10n/2(ad + bc)+ bd.

The additions and the multiplications by powers of 10 (which are just shifts!) can all be done in linear time. We

have therefore reduced our multiplication problem into four smaller multiplications problems, so the recurrence for

the time T (n) to multiply two n-digit numbers becomes

T (n) = 4T (n/2)+ O(n).

The 4T (n/2) term arises from conquering the smaller problems; the O(n) is the time to combine these problems into

the final solution (using additions and shifts). Unfortunately, when we solve this recurrence, the running time is still

Θ(n2), so it seems that we have not gained anything.

The key thing to notice here is that four multiplications is too many. Can we somehow reduce it to three? It

may not look like it is possible, but it is using a simple trick. The trick is that we do not need to compute ad and bc

separately; we only need their sum ad + bc. Now note that

(a+ b)(c+ d) = (ad + bc)+ (ac+ bd).

So if we calculate ac , bd, and (a + b)(c + d), we can compute ad + bc by the subtracting the first two terms from

the third! Of course, we have to do a bit more addition, but since the bottleneck to speeding up this multiplication

algorithm is the number of smaller multiplications required, that does not matter. The recurrence for T (n) is now

T (n) = 3T (n/2)+ O(n),

and we find that T (n) = nlog2 3 ≈ n1.59, improving on the quadratic algorithm.

If one were to implement this algorithm, it would probably be best not to divide the numbers down to one

digit. The conventional algorithm, because it uses fewer additions, is probably more efficient for small values of

n. Moreover, on a computer, there would be no reason to continue dividing once the length n is so small that the

multiplication can be done in one standard machine multiplication operation!

It also turns out that using a more complicated algorithm (based on a similar idea) the asymptotic time for

multiplication can be made arbitrarily close to linear– that is, for any ε > 0 there is an algorithm that runs in time

O(n1+ε).



Lecture 8 8-3

Strassen’s algorithm

Divide and conquer algorithms can similarly improve the speed of matrix multiplication. Recall that when

multiplying two matrices, A = ai j and B = bjk, the resulting matrix C = cik is given by

cik = ∑
j

ai jb jk.

In the case of multiplying together two n by n matrices, this gives us an Θ(n3) algorithm; computing each cik takes

Θ(n) time, and there are n2 entries to compute.

Let us again try to divide up the problem. We can break each matrix into four submatrices, each of size n/2 by

n/2. Multiplying the original matrices can be broken down into eight multiplications of the submatrices, with some

additions.


 A B

C D





 E F

G H


 =


 AE + BG AF + BH

CE + DG CF + DH




Letting T (n) be the time to multiply together two n by n matrices by this algorithm, we have T (n) = 8T (n/2)+

Θ(n2). Unfortunately, this does not improve the running time; it is still Θ(n3).

As in the case of multiplying integers, we have to be a little tricky to speed up matrix multiplication. (Strassen

deserves a great deal of credit for coming up with this trick!) We compute the following seven products:

• P1 = A(F −H)

• P2 = (A+ B)H

• P3 = (C + D)E

• P4 = D(G−E)

• P5 = (A+ D)(E + H)

• P6 = (B−D)(G+ H)

• P7 = (A−C)(E + F)

Then we can find the appropriate terms of the product by addition:

• AE + BG = P5 + P4−P2 + P6



Lecture 8 8-4

• AF + BH = P1 + P2

• CE + DG = P3 + P4

• CF + DH = P5 + P1−P3 −P7

Now we have T (n) = 7T (n/2)+Θ(n2), which give a running time of T (n) = Θ(nlog 7).

Faster algorithms requiring more complex splits exist; however, they are generally too slow to be useful in

practice. Strassen’s algorithm, however, can improve the standard matrix multiplication algorithm for reasonably

sized matrices, as we will see in our second programming assignment.


