
CS124 Lecture 5 Spring 2002

Minimum Spanning Trees

A tree is an undirected graph which is connected and acyclic. It is easy to show that if graph G(V,E) that

satisfies any two of the following properties also satisfies the third, and is therefore a tree:

• G(V,E) is connected

• G(V,E) is acyclic

• |E| = |V |−1

(Exercise: Show that any two of the above properties implies the third (use induction).)

A spanning tree in an undirected graph G(V,E) is a subset of edges T ⊆ E that are acyclic and connect all the

vertices in V . It follows from the above conditions that a spanning tree must consist of exactly n− 1 edges. Now

suppose that each edge has a weight associated with it: w : E → Z. Say that the weight of a tree T is the sum of the

weights of its edges; w(T) = ∑e∈T w(e). The minimum spanning tree in a weighted graph G(V,E) is one which has

the smallest weight among all spanning trees in G(V,E).

As an example of why one might want to find a minimum spanning tree, consider someone who has to install

the wiring to network together a large computer system. The requirement is that all machines be able to reach each

other via some sequence of intermediate connections. By representing each machine as a vertex and the cost of

wiring two machines together by a weighted edge, the problem of finding the minimum cost wiring scheme reduces

to the minimum spanning tree problem.

In general, the number of spanning trees in G(V,E) grows exponentially in the number of vertices in G(V,E).

(Exercise: Try to determine the number of different spanning trees for a complete graph on n vertices.) Therefore

it is infeasible to search through all possible spanning trees to find the lightest one. Luckily it is not necessary

to examine all possible spanning trees; minimum spanning trees satisfy a very important property which makes it

possible to efficiently zoom in on the answer.

We shall construct the minimum spanning tree by successively selecting edges to include in the tree. We will

guarantee after the inclusion of each new edge that the selected edges, X , form a subset of some minimum spanning

5-1

Lecture 5 5-2

tree, T . How can we guarantee this if we don’t yet know any minimum spanning tree in the graph? The following

property provides this guarantee:

Cut property: Let X ⊆ T where T is a MST in G(V,E). Let S ⊂V such that no edge in X crosses between S

and V −S; i.e. no edge in X has one endpoint in S and one endpoint in V −S. Among edges crossing between S and

V −S, let e be an edge of minimum weight. Then X ∪{e} ⊆ T′ where T ′ is a MST in G(V,E).

The cut property says that we can construct our tree greedily. Our greedy algorithms can simply take the

minimum weight edge across two regions not yet connected. Eventually, if we keep acting in this greedy manner,

we will arrive at the point where we have a minimum spanning tree. Although the idea of acting greedily at each

point may seem quite intuitive, it is very unusual for such a strategy to actually lead to an optimal solution, as we

will see when we examine other problems!

Proof: Suppose e /∈ T . Adding e into T creates a unique cycle. We will remove a single edge e′ from this

unique cycle, thus getting T′ = T ∪{e}−{e′}. It is easy to see that T ′ must be a tree — it is connected and has

n−1 edges. Furthermore, as we shall show below, it is always possible to select an edge e′ in the cycle such that it

crosses between S and V −S. Now, since e is a minimum weight edge crossing between S and V −S, w(e′) ≥ w(e).

Therefore w(T ′) = w(T)+ w(e)−w(e′) ≤ w(T). However since T is a MST, it follows that T ′ is also a MST and

w(e) = w(e′). Furthermore, since X has no edge crossing between S and V − S, it follows that X ⊆ T′ and thus

X ∪{e} ⊆ T ′.

How do we know that there is an edge e′ �= e in the unique cycle created by adding e into T , such that e′ crosses

between S and V −S? This is easy to see, because as we trace the cycle, e crosses between S and V −S, and we must

cross back along some other edge to return to the starting point.

In light of this, the basic outline of our minimum spanning tree algorithms is going to be the following:

X := { }.
Repeat until |X |= n−1.

Pick a set S ⊆V such that no edge in X crosses between S and V −S.
Let e be a lightest edge in G(V,E) that crosses between S and V −S.
X := X ∪{e}.

The difference between minimum spanning tree algorithms lies in how we pick the set S at each step.

Prim’s algorithm:

Lecture 5 5-3

In the case of Prim’s algorithm, X consists of a single tree, and the set S is the set of vertices of that tree. One

way to think of the algorithm is that it grows a single tree, adding a new vertex at each step, until it has the minimum

spanning tree. In order to find the lightest edge crossing between S and V − S, Prim’s algorithm maintains a heap

containing all those vertices in V − S which are adjacent to some vertex in S. The priority of a vertex v, according

to which the heap is ordered, is the weight of its lightest edge to a vertex in S. This is reminiscent of Dijkstra’s

algorithm (where distance was used for the heap instead of the edge weight). As in Dijkstra’s algorithm, each vertex

v will also have a parent pointer prev(v) which is the other endpoint of the lightest edge from v to a vertex in S. The

pseudocode for Prim’s algorithm is almost identical to that for Dijkstra’s algorithm:

Procedure Prim(G(V,E), s)
v,w: vertices
dist: array[V] of integer
prev: array[V] of vertices
S: set of vertices, initially empty
H: priority heap of V
H := {s : 0}
for v ∈V do

dist[v] := ∞, prev[v] :=nil
rof
dist[s] := 0
while H �= /0

v := deletemin(h)
S := S∪{v}
for (v,w) ∈ E and w ∈V −S do

if dist[w] > length(v,w)
dist[w] := length(v,w), prev[w] := v, insert(w,dist[w],H)

fi
rof

end while end Prim

Note that each vertex is “inserted” on the heap at most once; other insert operations simply change the value on

the heap. The vertices that are removed from the heap form the set S for the cut property. The set X of edges chosen

to be included in the MST are given by the parent pointers of the vertices in the set S. Since the smallest key in the

heap at any time gives the lightest edge crossing between S and V −S, Prim’s algorithm follows the generic outline

for a MST algorithm presented above, and therefore its correctness follows from the cut property.

The running time of Prim’s algorithm is clearly the same as Dijkstra’s algorithm, since the only change is how

we prioritize nodes in the heap. Thus, if we use d-heaps, the running time of Prim’s algorithm is O(m logm/n n).

Kruskal’s algorithm:

Lecture 5 5-4

Kruskal’s algorithm uses a different strategy from Prim’s algorithm. Instead of growing a single tree, Kruskal’s

algorithm attempts to put the lightest edge possible in the tree at each step. Kruskal’s algorithm starts with the edges

sorted in increasing order by weight. Initially X = { }, and each vertex in the graph regarded as a trivial tree (with

no edges). Each edge in the sorted list is examined in order, and if its endpoints are in the same tree, then the edge is

discarded; otherwise it is included in X and this causes the two trees containing the endpoints of this edge to merge

into a single tree. Note that, by this process, we are implicitly choosing a set S ⊆ V with no edge in X crossing

between S and V −S, so this fits in our basic outline of a minimum spanning tree algorithm.

To implement Kruskal’s algorithm, given a forest of trees, we must decide given two vertices whether they

belong to the same tree. For the purposes of this test, each tree in the forest can be represented by a set consisting of

the vertices in that tree. We also need to be able to update our data structure to reflect the merging of two trees into a

single tree. Thus our data structure will maintain a collection of disjoint sets (disjoint since each vertex is in exactly

one tree), and support the following three operations:

• MAKESET(x): Create a new x containing only the element x.

• FIND(x): Given an element x, which set does it belong to?

• UNION(x,y): replace the set containing x and the set containing y by their union.

The pseudocode for Kruskal’s algorithm follows:

Function Kruskal(graph G(V,E))
set X
X = { }
E:= sort E by weight
for u ∈V

MAKESET(u)
rof
for (u,v) ∈ E (in increasing order) do

if FIND(u) �= FIND(v) do
X = X ∪{(u,v)}
UNION(u,v)

rof
return(X)

end Kruskal

The correctness of Kruskal’s algorithm follows from the following argument: Kruskal’s algorithm adds an edge

e into X only if it connects two trees; let S be the set of vertices in one of these two trees. Then e must be the first

Lecture 5 5-5

edge in the sorted edge list that has one endpoint in S and the other endpoint in V − S, and is therefore the lightest

edge that crosses between S and V −S. Thus the cut property of MST implies the correctness of the algorithm.

The running time of the algorithm, assuming the edges are given in sorted order, is dominated by the set

operations: UNION and FIND. There are n−1 UNION operations (one corresponding to each edge in the spanning

tree), and 2m FIND operations (2 for each edge). Thus the total time of Kruskal’s algorithm is O(m×FIND+ n×
UNION). We will soon show that this is O(m log∗ n). Note that, if the edges are not initially given in sorted order,

then to sort them in the obvious way takes O(m logm) time, and this would be the dominant part of the running time

of the algorithm.

Exchange Property

Actually spanning trees satisfy an even stronger property than the cut property — the exchange property. The

exchange property is quite remarkable since it implies that we can “walk” from any spanning tree T to a minimum

spanning tree T̂ by a sequence of exchange moves — each such move consists of throwing an edge out of the current

tree that is not in T̂ , and adding a new edge into the current tree that is in T̂ . Moreover, each successive tree in the

“walk” is guaranteed to weigh no more than its predecessor.

Exchange property: Let T and T ′ be spanning trees in G(V,E). Given any e′ ∈ T ′ −T , there exists an edge

e ∈ T −T ′ such that (T −{e})∪{e′} is also a spanning tree.

The proof is quite similar to that of the cut property. Adding e′ into T results in a unique cycle. There must be

some edge in this cycle that is not in T′ (since otherwise T ′ must have a cycle). Call this edge e. Then deleting e

restores a spanning tree, since connectivity is not affected, and the number of edges is restored to n−1.

To see how one may use this exchange property to “walk” from any spanning tree to a MST: let T be any

spanning tree and let T̂ be a MST in G(V,E). Let e′ be the lightest edge that is not in both trees. Perform an

exchange using this edge. Since the exchange was done with the lightest such edge, the new tree must be lighter than

the old one. Since T̂ is already a MST, it follows that the exchange must have been performed upon T and results in

a lighter spanning tree which has more edges in common with T̂ (if there are several edges of the same weight, then

the new tree might not be lighter, but it still has more edges in common withT̂).

Lecture 5 5-6

1 5

3 5 2

4 1
2 5 7

3 6

Figure 5.1: An example of Prim’s algorithm and Kruskal’s algorithm. Which is which?

