
CSCI E-124-Spring, 2004 Homework 1
Russell Lowke, February 21st 2004

1. Suppose you are given a six-sided die, that might be biased.  Explain how to 
use die rolls to generate unbiased coin flips

To get unbiased coin flips from a biased die, we can reduce the die rolls to coin flips by mapping 1, 
2, 3 to “heads” and 4, 5, 6 to “tails”.  Let’s assign the probabilities p1, p2,...., p6 to the die rolling 
a 1, 2,..., 6 respectively.  Then the probability that this die will produce a “heads” (p) will be p1 + 
p2 + p3 and the probability of it producing a “tails” (q) will be p4 + p5 + p6.  So now that we 
have a valid mapping and a p and q, we can proceed with any of the algorithms that were given in 
class for coin flips, say the Advanced Multi-Level strategy.  This has already been proven to 
produce, on average, one bit per flip.  This will provide for us, on average, one bit per roll.

Now suppose you want to generate unbiased die rolls (from a six-sided die) 
given a potentially biased die.

The equivalent of the Von Neumann method when expanded to a six sided die is to simply define a 
round as six rolls and keep all permutations of the sequence of [ 1, 2 , 3 , 4, 5, 6 ], because all such 
permutations (excluding double and triples, etc.) have the same probability of occurring.  This 
yields 6! (720) results that can be kept, all occurring with probability p1*p2*...*p6 where pn is the 
probability of the number n being rolled.

Using the formula given in class, with th being the expected number of total rolls, e being the 
probability of generating a bit each round, and f being the number of rolls per round:

t = f / e

Since for us f = 6 and e = 6! (p1*p2*...*p6) we have

f = ( 6 ) / ( 6! (p1*p2*p3*p4*p5*p6)) = 

f = 1 / (5! (p1*p2*p3*p4*p5*p6))
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2.   Implement the three different methods for computing the Fibonacci numbers 
(recursive, iterative, and matrix) discussed in lecture.

I have implemented the three versions using C++, the code for each which starts on page 4.  The 
recursive method is fibonacci_r.cc, the iterative method is fibonacci_i.cc, and the matrix 
method is fibonacci_m.cc

Can you determine the first Fibonacci number where you reach integer overflow?

•!My machine reaches integer overflow at 232  ( which is = 4294967296 ).

In the case of  integer overflow at 232  the largest fibonacci number that can be calculated is the 
47th, which is 2971215073.
•!Many machines reach integer overflow at 216 ( which is = 65536 ).  

In the case of  integer overflow at 216  the largest fibonacci number that can be calculated is the 
24th, which is 75025.

How fast does each method appear to be? Give precise timings if possible.

I have used calculation of the 24th fibonacci number as a benchmark.  To amplify the result I have 
each program calculate this 10000 times, and time the duration . Note:  the resolution of the 
clock() C++ method is 1/100th of a second.

The recursive fibonacci_r.cc program takes 73.62 seconds to calculate the 24th Fibonacci 
number 10000 times. 
Recursive version, one progression to the 24th number takes ≈!0.007362ths of a second.
The iterative fibonacci_i.cc program takes .35 seconds to calculate the 24th Fibonacci number 
10000 times.  
Iterative version, one progression to the 24th number takes ≈!0.000035ths of a second.
The matrix  fibonacci_m.cc program takes 7.77 seconds to calculate the 24th Fibonacci number 
10000 times. 
Matrices version, one progression to the 24th number takes ≈!0.000779ths of a second.

When calculating low fibonacci numbers the iterative version is fastest and appears quickest.
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What is the largest Fibonacci number you can compute in one minute of machine 
time?

In 1 minute, recursive fibonacci_r.cc program yields ≈ 41 fibonacci numbers.

In 1 minute,  iterative fibonacci_i.cc program yields ≈ 9154 fibonacci numbers.

In 1 minute, matrix fibonacci_m.cc program yields ≈ 26525 fibonacci numbers.

The matrices version easily computes the most numbers in one minute, calculating 26525 fibonacci 
numbers.
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//
//
//  fibonacci_r.cc
//
//      AUTHOR: Russell Lowke   Mon Feb 16th 2004
//
// Description: Calculates the Fibonacci sequence recursively
//
//

#include <iostream>
#include <ctime>

using namespace std;

enum {OVERFLOW_AT2_16 = 65536};
enum {OVERFLOW_AT2_32 = 4294967296}; // not used, but nice to know

//
//  recursive call that calculates the fibonacci sequence
//
// I have included  % OVERFLOW_AT2_16 in arithmetic, as specified,
// even though my machine does not overflow using ints at 2^16
//
unsigned int fib_r (int n) {
    
    if (n <= 0) // base case 0       = 0

return 0;
else if (n <= 2) // base case 1 or 2  = 1

return 1;
else

return ( (fib_r(n - 1) + fib_r(n - 2)) % OVERFLOW_AT2_16 );
}

//
// Calculates the number of fibonacci numbers calculated in [seconds] seconds
//
int nFibsInTime(int seconds) {

    int n = 0;
clock_t endwait =  clock() + seconds * CLK_TCK;

    while (clock() < endwait) {
        ++n;
        fib_r(n);
    }
    
    return n;

}

//
// Calculates to the [fibNum] fibonacci number [nTimes] times
//  returning the duration taken
//
clock_t timedFib(int fibNum, int nTimes) {
    clock_t startTime = clock();
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    for (int i; i < nTimes; i++ )
        fib_r(fibNum);
    clock_t endTime = clock();
    
    return (endTime - startTime);
}

int main() {
    
    clock_t duration = timedFib(24, 10000);
    cout << "It took " << duration << " 1/" << CLK_TCK <<
        "ths of a second for fib_r to compute the 24th fibonacci number 10000 
times" << endl;
    
    cout << endl;
    
    int n = nFibsInTime(60);

cout << "After 1 minute fib_r computed " << n << " fibonacci numbers." 
<< endl;
    
    return 0;
}
    

5 of 21



//
//
//  fibonacci_i.cc
//
//      AUTHOR: Russell Lowke   Mon Feb 16th 2004
//
// Description: Calculates the Fibonacci sequence using iteration
//

#include <iostream>
#include <ctime>
#include <vector>

using namespace std;

typedef vector<int>    IntList;

enum {OVERFLOW_AT2_16 = 65536};
enum {OVERFLOW_AT2_32 = 4294967296}; // not used, but nice to know

//
//  iterative call that calculates a fibonacci number
//
// I have included  % OVERFLOW_AT2_16 in arithmetic, as specified,
// even though my machine does not overflow using ints at 2^16
//
unsigned int fib_i (int n) {

    IntList f(n + 1); // +1 as [0] included
    
    f[0] = 0;
    f[1] = 1;
    

for (int i = 2; i <= n; ++i)
        f[i] = ( f[i - 1]  + f[i - 2] ) % OVERFLOW_AT2_16;
    
    return f[n]; // OVERFLOW_AT2_16 avoids overflow
}

//
// Calculates the number of fibonacci numbers calculated in [seconds] seconds
//
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int nFibsInTime(int seconds) {

    int n = 0;
clock_t endwait =  clock() + seconds * CLK_TCK;

    while (clock() < endwait) {
        ++n;
        fib_i(n);
    }
    
    return n;
}

//
// Calculates to the [fibNum] fibonacci number [nTimes] times
//  returning the duration taken
//
clock_t timedFib(int fibNum, int nTimes) {
    clock_t startTime = clock();
    
    for (int i; i < nTimes; i++ )
        fib_i(fibNum);
    clock_t endTime = clock();
    
    return (endTime - startTime);
}

int main() {

    clock_t duration = timedFib(24, 10000);
    cout << "It took " << duration << " 1/" << CLK_TCK <<
        "ths of a second for fib_i to compute the 24th fibonacci number 10000 
times" << endl;
    
    cout << endl;

    int n = nFibsInTime(60);
cout << "After 1 minute fib_i computed " << n << " fibonacci numbers." << 

endl;

    return 0;
}
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//
//
//  fibonacci_m.cc
//
//      AUTHOR: Russell Lowke   Mon Feb 21st 2004
//
// Description: Calculates the Fibonacci sequence using matrices
//

#include <iostream>
#include <ctime>
#include <vector>
#include <cmath>

using namespace std;

typedef vector<int>    IntList;
typedef vector<IntList> Matrix;
typedef vector<Matrix> MatrixList;

enum {OVERFLOW_AT2_16 = 65536};
enum {OVERFLOW_AT2_32 = 4294967296}; // not used, but nice to know

//
//  utility to create a matrix of specified width and height from an array
//
Matrix buildMatrix(int width, int height, int data[]) {
    
    Matrix n;
    
    for (int x = 0; x < width; ++x) {
        IntList col;
        for (int y = 0; y < height; ++y)
            col.push_back( data[ width * y + x] );
        n.push_back( col );
    }
    return n;
}

//
// multiply matrices   m x n
//
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Matrix muliplyMatrices (Matrix matrixM, Matrix matrixN) {

    Matrix n;
    
    // resultant matrix will have m's height and n's width
    int width  = matrixN.size();
    int height = matrixM[0].size();
    
    for (int x = 0; x < width; ++x) {
    
        IntList col;
        
        for (int y = 0; y < height; ++y ) {
        
            int val = 0;
            for (int i = 0; i < height; ++i )
                val += (matrixM[i][y] % OVERFLOW_AT2_16 * matrixN[x][i] % 
OVERFLOW_AT2_16 );
            
            // % OVERFLOW_AT2_16 avoids overflow
            col.push_back( val );
        }
        n.push_back( col );
    }
    return n;
}

//
//  matrix call that calculates a fibonacci number
//
int fib_m (int n) {
    
    if (n == 0) {
        return 0;
    } else {
        //  matrixA = [ 0 1 ]
        //            [ 1 1 ]
        //
        int dataA[] = {0, 1, 1, 1};
        Matrix matrixA = buildMatrix(2, 2, dataA );
        Matrix matrixB = matrixA;
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        /*
        // matrixA^n      simple version for iterative matrix (not used)
        for (int i = 1; i < n; ++i )
            matrixA = muliplyMatrices(matrixA, matrixB);
        */
        
        MatrixList mList;
        matrixA = buildMatrix(2, 2, dataA );
        matrixB = matrixA;
        mList.push_back( matrixA );         // mList[0]
        int place = 0;
        int indice = 1; // as in x^1
        
        // use repeated squaring
        do {
            indice *= 2; // double the indice
            ++place;
            matrixA = muliplyMatrices(matrixA, matrixB);
            mList.push_back( matrixA );
            matrixB = matrixA;
        } while (indice*2 < n);
        
        for (; place >= 0; place--) {
        
            // get the indice of this "place"     2^place
            int pwr = (int) pow(2.0, place);
            
            if (indice + pwr <= n) { // include if < n
                matrixA = muliplyMatrices(matrixA, mList.at(place));
                indice += pwr; // update indice
            }
        }
        
        //  matrixC = [ 0 ]
        //            [ 1 ]
        //
        int dataC[] = {0, 1};
        Matrix matrixC = buildMatrix(1, 2, dataC);
        
        return muliplyMatrices(matrixA, matrixC)[0][0];
    }
}
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//
// Calculates the number of fibonacci numbers calculated in [seconds] seconds
//
int nFibsInTime(int seconds) {

    int n = 0;
clock_t endwait =  clock() + seconds * CLK_TCK;

    while (clock() < endwait) {
        ++n;
        fib_m(n);
    }
    
    return n;

}

//
// Calculates to the [fibNum] fibonacci number [nTimes] times
//  returning the duration taken
//
clock_t timedFib(int fibNum, int nTimes) {
    clock_t startTime = clock();
    
    for (int i; i < nTimes; i++ )
        fib_m(fibNum);
    clock_t endTime = clock();
    
    return (endTime - startTime);
}

int main() {
    clock_t duration = timedFib(24, 10000);
    cout << "It took " << duration << " 1/" << CLK_TCK <<
        "ths of a second for fib_m to compute the 24th fibonacci number 10000 
times" << endl;
    
    cout << endl;
    int n = nFibsInTime(60);

cout << "After 1 minute fib_m computed " << n << " fibonacci numbers." << 
endl;
    return 0;
}
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3.  Indicate for each pair of expressions (A, B) in the table below the relationship 
between A and B.

Note: I couldn’t get characters for Little Omega and Theta to display properly, so I have used “w” 
for Little Omega and “ø” for Theta.

≤ << ≥ >> =

A B O o Ω w ø

logn log(n2) Y N Y N Y

log(n!) log(nn) Y Y N N N

n1/3 (log n)6 Y Y N N N

n22n 3n Y Y N N N

(n2)! nn N N Y Y N

n2/log n nlog(n2) N N Y Y N

(log n)logn n/log(n) N N Y Y N

100n + logn (logn)3+n Y N Y N Y

[ Notes ]

O f(n) is O(g(n)) if f(n)/g(n) tends to c

o f(n) is o(g(n)) if f(n)/g(n) tends to 0

Ω f(n) is Ω(g(n)) if g(n)/f(n) tends to c

w f(n) is w(g(n)) if g(n)/f(n) tends to 0

ø if O and Ω are True then True
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4. For all of the problems below, when asked to give an example, you should give 
an example whose domain and range is the positive integers.

• Find (with proof) a function f1 such that f1(2n) is O(f1(n))

Let f1(n) = n   to prove f1(2n) = O(f1(n))
f1(2n) ≤ c . f1(n)    for all n ≥ N

Let c = 2 then
For n = 1 2 . 1 ≤  2 . 1
For n

f1(2n) ≤ 2(f1(n))
2n ≤ 2(n)
2n ≤ 2n

which is true for all n ≥ N
f1(n2) ≤ cg(n) which is O

• Find (with proof) a function f2 such that f2(2n) is not O(f2(n)).

Let f2(n) = en then f2(2n) = e2n

Let c = 1
For n = 1 e2 > e so true for n = 1

For n e2n > en so

multiply each side by e2

e2n+2 > en+2

e2(n + 1) > e(n+2)

e2(n + 1) > e . e(n+1)  > e(n + 1)

e2(n+1) > e(n+1)

Therefore by induction it is true for all n.
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• Show that if f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n)).

f(n) ≤ c . g(n)
g(n) ≤ c2 . h(n)

if f(n) is O(g(n)) then
f(n) ≤ c . g(n)

if g(n) is O(h(n)) then
g(n) ≤ c2 . h(n)

Therefore f(n) ≤ c . c2 . h(n)
Therefore f(n) ≤ c3 . h(n) where c3 = c . c2

Therefore f(n) is O(h(n))

• Give a proof or a counterexample: if f is not O(g), then g is O(f)

If f is not O(g), then g is O(f)

If f ≠≤ c1 . g then
f > c1 . g
c1 . g < f
g < 1/c1 . f

so g is O(f)
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• Give a proof or a counterexample: if f is o(g), then f is O(g)

If f is o(g), then f is O(g)

   lim f/g is 0 definition of o
 n -> ∞

Therefore f(n)/g(n) is < c for all n > N
f(n) is < c . g(n) for all n > N

By definition f(n) is  O(g(n))
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5.  Prove StoogeSort correctly sorts.

|    A1                 |    A2          |      A3              |

A2 ≥ A3     else a large number could be left behind

A2 ≥ A1      else a small number could be left behind

So, when defining our breaks, let the sizes be as follows:
A1 = n / 3, 
A2 = n / 3 + n % 3
A3 = n / 3
and the above conditions will always be met.

Why ScroogeSort works

Because we are given that StoogeSort correctly sorts on every pass:
After the 1st sort we are guaranteed that the n / 3 largest numbers are not in A1
To see why this is true, consider the case when they start in A1 (when they start anywhere else, it’s 
obvious that they won’t somehow migrate down to A1 because, again, StoogeSort actually sorts 
correctly).  If the n / 3 largest numbers start in A1, they are pulled into A2 after the first sort 
because, due to the way we defined the size of our partitions, A2 is always at least as large as A1 
and thus able to hold every one of the n / 3 values.

Next, we know that:
After 2nd sort that the n / 3 largest numbers are in A3 in sorted order and the smallest numbers are 
are in A1 & A2
Remember that the largest n / 3 numbers were NOT in A1 by the end of the first sort.  What that 
means is they were either in A2 or A3.  In either scenario, after the list A2A3 had been sorted, they 
will migrate to A3 and stay there, in sorted order (again, because we are given that StoogeSort sorts 
correctly on every pass).  So we are guaranteed that, even if the largest numbers started in A1, they 
will have migrated to A3 by the end of this sort.
The smallest numbers, if they started in A1, are still in A1.  If they were in A2, they also were 
pushed to A1 after the first sort.  If they were in A3, they’ve now migrated to A2 because A2 is 
large enough to hold everything in A3 and, after that section of the list was sorted, would have the 
smallest numbers pushed into it.
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Lastly, we know that:
After the 3rd sort the rest of the list has been sorted.
Before starting the third sort, we knew that the largest numbers are sitting (sorted) in A3.  So that 
part of the list is done.  We also know that the smallest numbers are in A1&A2.  Therefore, when 
we sort again, this portion of the list is going to be organized in sorted order.  The smallest numbers 
are in A1, the largest are in A3, and the middle values are sitting in A2 (why?  If they smallest are in 
A1 and the largest are in A3 there’s nowhere else for these middle values to be).

In terms of running time, StoogeSort has to partially sort the list three times.  The length of the list 
that it is sorting is size n/3.  So a recurrence for its running time would be

T(n) = 3 T (2n / 3)

Subsititute m = 2n giving T(1/2m) = 3 T (m / 3)

and, using the master formula given in class,  

Formula  T(n) = aT(n/b) + cnk where   a = 3,  b = 3,  c = 1,  k = 0

T(1/2m) is  O(1/2m log33) if 3 > 1 TRUE

T(1/2m) is  O(1 log 1/2m) if 3 = 1 FALSE
T(1/2m) is O(1) if 3 < 1 FALSE

Asymptotic runningtime for T (n) = 3 T (2n / 3)  is  O(n)
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6.  Derivation of Expression for T(n) where T(1) = 1 and T(n) = T(n-1) + 3n -3

Note T(1) = 1,    T(2) = 4,    T(3) = 10.

We can derive:
T(n) = {3n-3} + {3(n-1)-3} + {3(n-2)-3} + {3(n-3)-3}  + …(n terms)      + 1
        = ( n terms of 3n)  + (n terms of  -3  +  -6  +  -9  +  -12  …)  + 1.  
        =  3n2  + (n/2)[-6  +  (n-1)(-3)]  + 1   

                    =  3n2/2  -  3n/2  +  1
In the third line, use is made of the formula for the sum of an arithmetic progression 
S = A + (A+D) + (A+2D)  … (n terms)  = (n/2)[2A + (n-1)D] where A = -3 and D = -3.
Note that using T(n) = 3n2/2  -  3n/2  + 1, T(1) = 1,  T(2) = 4  and T(3) = 10 as required.

Proof by induction:
For n=1, T(n) = 3n2/2  -  3n/2  + 1  gives T(1) = 1 as required.

Assume  T(n) = 3n2/2  -  3n/2  + 1  for n.
Then from T(n) = T(n-1) + 3n -3,   
     T(n+1) =  T(n) + 3(n+1) – 3  (substitute n+1 instead of n)
                 =  3n2/2  -  3n/2  + 1  + 3(n+1) – 3

        =  3n2/2  +  3n/2  +  1,   

                 =  3(n+1)2/2  -  3(n+1)/2  + 1   as follows by removing the brackets.

The above expression is the same form as T(n) = 3n2/2  -  3n/2  + 1, but with n+1 instead of n. So 

if T(n) = 3n2/2  -  3n/2  + 1 for n it is true for n+1.

So, by induction, T(n) = 3n2/2  -  3n/2  + 1  for all n.
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• T(1) = 1, T(n) = 2T(n - 1) + 2n -1

If T(n) = 2T(n - 1) + 2n -1,  then
T(n + 1) = 2T(n) + 2n + 1

Base For n = 1, T(1) = 3 . 21 - 2(1) - 3 = 6 - 2 - 3 = 1

Assume T(n) = 3 . 2n - 2n - 3  (from Mathematica)

We show T(n + 1) = 2T(n) + 2(n + 1) - 1 using substitution
   = 2(3 . 2n - 2n - 3) + 2(n + 1) - 1

   = 2 . 3 . 2n - 4n -6 + 2n + 1

   = 3 . 2(n + 1) - 4n - 5 + 2n

   = 3 . 2n+1 - 2n - 5

   = 3 . 2n+1 - 2(n + 1) - 3

Therefore true for n + 1
Therefore by induction this form is true for all n.
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7. Give asymptotic bounds for T(n) in each of the following recurrences.

Formula: T(n) = aT(n/b) + cnk     a ≥ 1  b ≥ 2 are integers  c, k are positive constants

T(n) is  O(n logba) if a > bk

T(n) is  O(nk log n) if a = bk

T(n) is O(nk) if a < bk

• T(n) = 4T(n/2) + n3

Using  T(n) = aT(n/b) + cnk where   a = 4,  b = 2,  c = 1,  k = 3

T(n) is  O(n log24) if 4 > 23 FALSE

T(n) is  O(n3 log n) if 4 = 23 FALSE

T(n) is O(n3) if 4 < 23 TRUE

Asymptotic bound for T(n) = 4T(n/2) + n3 is     O(n3)

• T(n) = 17T(n/4) + n2

Using  T(n) = aT(n/b) + cnk where   a = 17,  b = 4,  c = 1,  k = 2

T(n) is  O(n log417) if 17 > 42 TRUE

T(n) is  O(n2 log n) if 17 = 42 FALSE

T(n) is O(n2) if 17 < 42 FALSE

Asymptotic bound for T(n) = 17T(n/4) + n2  is  O(n log417)

which simplifies to approximately ≈  O(n2.05)

20 of 21



• T(n) = 9T(n/3) + n2

Using  T(n) = aT(n/b) + cnk where   a = 9  b = 3,  c = 1,  k = 2

T(n) is  O(n log39) if 9 > 32 TRUE

T(n) is  O(n2 log n) if 9 = 32 FALSE

T(n) is O(n2) if 9 < 32 FALSE

Asymptotic bound for T(n) = 9T(n/3) + n2   is  O(n2 log n)

• T(n) = T(√n) + 1

Let m = √n
T(m2) = T(m) + 1

Using  T(m2) = aT(m/b) + cmk where   a = 1  b = 1,  c = 1,  k = 0

T(m2) is  O(1log m)

T(m2) is  O(log m)

T(n) is O(log n1/2) substitute back m

T(n) is O(1/2 log n)
T(n) is O(log n)

Asymptotic bound for T(n) = T(√n) + 1   is O(log n)
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