CS E-124-Spring, 2004 Programming Assignment 2 Out: March 25, 2004
Due: April 16, 2004

Note:

I am handing this out early and making it due late. You should be aware that you will have another
problem set to do during this time interval; it will be due roughly April 23.

Overview:

Strassen’s divide and conquer matrix multiplication algorithm for n by n matrices is asymptotically
faster than the conventional O(n?) algorithm. This means that for sufficiently large values of n, Strassen’s
algorithm will run faster than the conventional algorithm. For small values of n, however, the conventional
algorithm is faster.

Since Strassen’s algorithm is a recursive algorithm, at some point in the recursion, once the matrices
are small enough, we may want to switch from recursively calling Strassen’s algorithm and just do a
conventional matrix multiplication. Let us define the cross-over point between the two algorithms to be
the value of n for wihch we want to stop using Strassen’s algorithm and switch to conventional matrix
multiplication. The goal of this assignment is to implement the conventional algorithm and Strassen’s
algorithm and to determine their cross-over point, both analytically and experimentally. One important
factor our simple analysis will not take into account is memory management, which may significantly affect
the speed of your implementation.

Tasks:

1. Assume that the cost of any single arithmetic operation (adding, subtracting, multiplying, or dividing
two real numbers) is 1, and that all other operations are free. Consider the following variant of
Strassen’s algorithm: to multiply two n by n matrices, start using Strassen’s algorithm, but stop the
recursion at some size ng, and use the conventional algorithm below that point. You have to find a
suitable value for ng — the cross-over point. Analytically determine the value of ng that optimizes
the running time of this algorithm in this model. (That is, solve the appropriate equations.) This
gives a crude estimate for the cross-over point between Strassen’s algorithm and the standard matrix
multiplication algorithm.

2. Implement your variant of Strassen’s algorithm and the standard matrix multiplication algorithm to
find the cross-over point experimentally. Experimentally optimize for ny and compare the experi-
mental results with your estimate from above. Make both implementations as efficient as possible.
The actual cross-over point, which you would like to make as small as possible, will depend on how
efficiently you implement Strassen’s algorithm. Your implementation should work for any matrices,
not just those whose dimensions are a power of 2.

To test your algorithm, you might try matrices where each entry is randomly selected to be 0 or 1;
similarly, you might try matrices where each entry is randomly selected to be 0, 1 or 2, or instead 0,
1, or —1. You might also try matrices where each entry is a randomly selected real number in the
range [0, 1]. You need not try all of these, but do test your algorithm adequately.

Code setup:

So that we may test your code ourselves as necessary, please make sure your code accepts the following
command line form:



strassen 0 dimension textfile

The flag 0 is meant to provide you some flexibility; you may use other values for your own testing,
debugging, or extensions. The dimension, which we refer to henceforth as d, is the dimension of the matrix
you are mulitplying, so that 32 means you are multiplying two 32 by 32 matrices together. Textfile is an
ASCII file with 2d? integer numbers, one per line, representing two matrices A and B; you are to find
the product AB = C'. The first integer number is matrix entry ag g, followed by ag1,a0.2,...,a0,4—1; next
comes a1 ,a1,1, and so on, for the first d? numbers. The next d?> numbers are similar for matrix B.

The output should be a list of the values of the diagonal entries co,c11,...,¢c4—1,d-1-

The inputs we present will be small integers, but you should make sure your matrix multiplication
can deal with results that are up to 32 bits.

Also, be sure to include a makefile, or give explicit instructions on how to compile if necessary.

What to hand in:

Hand in a project report (on paper) describing your analytical and experimental work (for example,
carefully describe optimizations you made in your implementations). Be sure to discuss the results you
obtain, and try to give explanations for what you observe. How low was your cross-over point? What
difficulties arose? What matrices did you multiply, and does this choice matter?

Your grade will be based primarily on the correctness of your program, the crossover point you find,
your interpretation of the data, and your discussion of the experiment.

Hints:

It is hard to make the conventional algorithm inefficient; however, you may get better cacheing per-
formance by looping through the variables in the right order (really, try it!). For Strassen’s algorithm:

e Avoid excessive memory allocation and deallocation.
e Avoid copying large blocks of data unnecessarily.

e You should have your implementation of Strassen’s algorithm work even when n is odd! This requires
some additional work.



