
csci-e215
Assignment 5: small shell

Introduction

A Unix shell is a tool that allows users to manage processes.Using a shell, a person can run programs,
control input and output, and create pipelines.

Unix shells do more than launch programs.Most shells are comprehensive programming languages.The
shell programming language includes variables (local and global), functions, and a full range of control
flow syntax, includingif statements andwhile loops. Programswritten in a shell programming language
are called shell scripts.

The sample shell developed in class implements about half of the features of a typical shell.It runs pro-
grams, it allows some control of environment variables, but it has no control flow, nor does it allow one to
use the shell variables in statements.

For this assignment, you will use the ideas and some of the code from class and the text to create a more
sophisticated shell.By adding mechanisms to input and retrieve shell variables, by adding an ‘if’ state-
ment, and by allowing the shell to read scripts in addition to standard input, you will give the shell enough
structure to be programmed.

The Big Picture

In its simplest form, a shell executes programs on request.You type the name of a program, the shell cre-
ates a new process, and then the shell runs the requested program in the new process. Whenthe program
ends, the shell wakes up and awaits the next request.

The main loop for a shell is:

set_up(); /* initialize things */
while (get_next_command())

parse_command()
if (! built_in_command())

execute_command();

The Story So Far

In the simple shells presented in class (psh1, psh2, and smsh1), ‘set_up’ consists of initializing the environ-
ment. The‘get_next_command’ function reads a line from standard input.‘parse_command’ splits the
input line into white-space separated strings.The ‘built_in_command’ operation is a set of strcmp()’s and
ifs and elses.If the command is a built-in command, the shell calls an internal function to do the work. If
the command is not built-in, then the shell tries to fork() and execvp() it.

Where to Go from Here

There are lots of ways to expand a shell.The textbook presents another approach to writing a shell.It is a
good idea to understand the structure of that example. Bycomparing the example from class to the one in
the text, you can form your own ideas about how you think a shell should be organized. You do not need to
follow the basis from the class example, nor do you need to copy the version in the text. Thereare many
approaches to writing a program, you may select any method that makes sense to you and meets the
requirements of the assignment.

page 1

smallsh

For this assignment, you will write a shell that includes the features from the example in class plus specific
additions. Thespecific additions you will make are:

1) Alternate Input Smsh1 reads commands from standard input.This is the interactive mode: the user
types a command, the shell executes it. The real shell can also read commands from a file.This is
the scripted mode: the user prepares a file that contains commands and then passes the name of that
‘script file’ to the shell as a command line argument. For example:smsh file.of.commands

Your program, smsh2, should check the command line.If there is an argument, your smsh2 should
use that file as a shell script.When reading from a script, your shell should not print prompts before
each line.

2) The cd built-in The shell executes the change-directory command (cd) directly; it does not call a
program to do this.Be sure to understand why the shell cannot call a program to do this.Then add
cd to smsh2.

3) The exit built-in The exit command causes the shell to exit. If exit is given a numeric argument, the
shell passes the value of that argument to the exit() system call.The exit command is particularly
useful in shell scripts.Add this feature to your shell.

4) Input Implement a new built-in command ‘read’ that works sort of like the Bourne shell read com-
mand. Theread command takes one argument: the name of the variable into which the input is read.
The shell reads one line from standard input (not from the script) and stores that line in the variable.
It therefore is the equivalent of C’s gets() function, Perl’s <STDIN>, and BASIC’s input command.

5) Variable Substitution Consider this fragment: DIR=/usr/bin ; ls $DIR $DIR.old it
assigns a string to the variable DIR and then uses that variable in another command.The program
‘ls’ sees the arguments /usr/bin and /usr/bin.old, not the strings $DIR and $DIR.old.Add this feature
to smsh2.Where does this substitution take place? Duringreading in the line? During parsing the
line? Theway you add variable substitution to your program affects the design of your input and
parsing sections.

Think through this carefully. When the shell sees a dollar sign, it reads the following characters as
the name of a variable. How does it know where the variable name ends?The shell looks for upper
and lower case letters, digits, and the underscore.Any sequence of those characters is a legal vari-
able name, as long as the first character is not a digit.Thus, in$DIR.old the variable name isDIR .

Your program, therefore, will consider the variable name to end when it encounters any character not
in this set.Make sure you modify the assignment statement so that the user is not allowed to create
variables with illegal characters.

6) Quoted Characters What if you want to include a real dollar sign in your command, and you do not
want your shell to try to substitute a variable value? Assoon as you introduce special characters, you
need to create a mechanism for un-specialing them.The Unix tradition is to use the backslash in
front of each special character that you want treated ‘as is.’ A dd this feature to your shell.More
sophisticated quoting (using " and ’) is not required.

7) The if command The hallmark of a programming language is the if command.Your shell should be
able to process this:

page 2

smallsh

echo Name to look up\?
read NAME
if grep $NAME $HOME/phonelist
then

echo there is the name
else

echo cannot locate $NAME
fi

The word if is followed by a command and its arguments. Theshell runs the command normally and
keeps track of the exit status of the command.If the command exits with status 0, the lines after the
‘then’ line are executed by the shell.If the command exits with non-zero status, then the lines after
‘else’ (if there be any) are executed. Theif command is terminated by a line consisting of the word
‘fi’. The other keywords ‘then’ and ‘else’ must appear on their own lines. The else clause is
optional. You are not required to get nested ifs to work, but it is interesting, and not that difficult.

Getting Started

The sources from class are in ˜lib215/lectures/lect09/5_Code .Various supporting documents and code are
in ˜lib215/hw/smsh .Copy what you want to play with to your account and test out the shell.Get smsh1
working with fork() and signal() so it does the basic operations.Add chdir() just to get started.It is not
tricky.

Think about variable substitution.There are two popular approaches to this problem.

One method reads the entire input line into an array then calls a function to copy characters from that array
to a new one, replacing each instance of $var with its value. Thistranslation program also takes care of
backslashes.

The other method performs variable substitution as part of a wrapper to getc().Usually, getc() returns the
next character from the current input stream.Note, to support item (1), your shell will not just read from
stdin. Itwill read from stdin or from a script.This getc wrapper will read the next character. If i t is a bor-
ing character, that is neither backslash nor dollar sign, the function will pass that character to its caller.

On the other hand, if the character is a backslash or dollar sign, the function will need to do something
fancier in order to return the next character to its caller.

Regardless of how you handle variable substitution, you need to make sure you are splitting the input
stream into separate arguments.

Plan out the ‘if’ command implementation.The command after the word ‘if ’ run normally, but the exit sta-
tus affects how the shell processes subsequent lines.You could use recursion or you could keep some state
variables. Inthe latter case, the keywords ‘else’ and ‘fi’ serve as state transitions.

Your shell is a subset of the standard Bourne shell (sh), so test how things are supposed to work under sh.

What to Turn In

[1] Full source, Makefile, a clean gcc -Wall, and a sample run.You must test the script provided in
˜lib215/hw/smsh/test.smsh .Other samples of its execution are welcome.Also, you need to turn in

[2] Electronicversion of source and docs.Cd into your smsh working directory and
type ˜lib215/handinsmsh

page 3

